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Human Signal Transducer and Activator of Transcription 3 (STAT3) protein has been 
recently identified as a potential target for the treatment of psoriasis. However, three 
dimensional (3D) structure of this important protein for humans is not yet available. In 
order to design drug candidates for psoriasis 3D structure for human STAT3 protein was 
required. Therefore, an attempt has been made to predict the 3D structure of human 
STAT3 protein. Backbone conformation of the modeled structure was validated by 
PROCHECK and was found to be satisfactory. Overall quality factor given by ERRAT 
was found to be 92.55% and VERIFY3D profile confirmed good quality of modeled 
structure. The protein structure validation was followed by molecular dynamics 
simulations.  Fludarabine has already been identified as an established drug which acts on 
human STAT1 protein and shares very high degree of homology with human STAT3. 
Hence, similarity with Fludarabine was selected as screening parameter. A huge library of 
ligands was generated from ZINC database using similarity value of 90%. The generated 
library was further screened on the basis of Lipinski rule of five to get 114 ligands. These 
ligands were subjected to docking studies. Our analysis provides insight into the structural 
properties of human STAT3 and defines its active sites. Moreover, ligand [5-(6-
aminopurin-9-yl)-4-hydroxy-2 (phosphonooxymethyl) oxolan-3-yl] dihydrogen phosphate 
showed very good binding ability in comparison to Fludarabine. Toxicological studies 
found to be satisfactory. This study suggests that [5-(6-aminopurin-9-yl)-4-hydroxy-2 
(phosphonooxymethyl) oxolan-3-yl] dihydrogen phosphate bears promises to be used as 
potential analogue in treatment of psoriasis.  
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1. Introduction 
 
Psoriasis is a skin disorder characterized by increased epidermal proliferation, incomplete 

differentiation, elongation and dilatation of superficial plexus of dermal capillaries. Moreover, it is 
a diverse inflammatory and immune cell infiltrate of the epidermis and papillary dermis. 
Numerous protein targets have been identified in various research studies for the treatment of 
psoriasis viz. Signal Transducer and Activator of Transcription 3 (STAT3), Want5, Endothelin-1, 
enzyme - alpha secretase, S100 proteins, p53, Serum Response Factor (SRF), Heat shock proteins 
70 (HSP70), Bcl-x etc [1]. STAT3 is a protein involved in conveying extracellular signals to the 
nucleus. It is crucial to the development of the psoriasis [2]. STAT proteins transmit signals from 
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cytokines or growth factors that have receptors on cell-surface which are associated with tyrosine 
kinase activity. Kinases, such as members of the Janus kinase family or SRC family, 
phosphorylate these receptors and provide docking sites for inactive STAT monomers, which in 
turn gets phosphorylated and forms activated dimers. Activated STATs progress to the nucleus. 
They involved in regulating numerous genes that control elementary biological process including 
apoptosis, cell proliferation and immune responses [3]. Blocking the function of STAT3 using 
antisense oligonucleotide inhibits the onset psoriasis and reverses established psoriatic 
lesions.  Further analysis revealed a dual requirement of both activated STAT3 in keratinocytes as 
well as in T cells. It indicates that the pathogenesis of psoriasis is rooted in a co-operative process 
involving STAT3 regulated genes in both skin cells and the immune system [4]. Another study 
demonstrated that phosphatyrosyl peptides block STAT3 mediated DNA binding activity, gene 
regulation and cell transformation. Furthermore, to identify small molecular inhibitors of STAT3 
the ability of its SH2 domain binding peptide PY*LKTK (Y* represents phosphorylation) to 
disrupt STAT3 activity in vitro has been investigated [5]. The presence of PY*LKTK, but not 
PYLKTK or PFLKTK, in nuclear extracts results in significant decrease in the levels of DNA 
binding activities of STAT3. In present study, for the first time human STAT3 protein structure 
modeling, validation, active site prediction, screening of potential ligands, their docking studies 
and toxicological predictions are demonstrated. 

 
 
2. Material and methods  
 
2.1 Human STAT3 protein modeling 
Complete protein sequence of human STAT3 protein is available. However, validated 3D 

structure of it is not yet available in Protein Data Bank (PDB) [6]. Hence, the present exercise of 
developing the 3D model of human STAT3 was undertaken. In order to model the 3D structure of 
human STAT3 protein, its complete sequence was obtained from UniProtKB database (accession 
number P40763) and was used as template for comparative modeling approach. BLASTP [7] 
search was performed against PDB with the default parameters to find suitable templates for 
homology modeling. In order to ensure accuracy in modeling 3D structure, multiple templates 
were selected for this protein through BLAST against PDB (Protein Data Bank) database. The 
academic version of MODELLER9v7 [8] was used for 3D structure generation based on the 
information obtained from sequence alignment. 

The MODELLER software uses probability density functions (PDFs) as the spatial 
restraints instead of energy [9-11]. The 3D model of a protein is obtained by optimization of the 
molecular pdf such that the model disobeys the input restraints as little as possible. The molecular 
pdf was derived as a combination of pdfs restraining individual spatial features of the whole 
molecule. Out of 20 models generated by MODELLER, the one with the best G-score of 
PROCHECK was selected for further studies [12].  

 
2.2 Validation of modeled human STAT3 protein 
Energy minimized refined model was subjected to validation on PROCHECK, 

VERIFY3D, WHATCHECK and ERRAT server.  PROCHECK was used to analyze the stereo-
chemical qualities of 3D model of STAT3 protein. VERIFY3D (a structure evaluation server) 
were used to check the residue profiles of the obtained three dimensional models. Quality of the 
model was evaluated for the environment profile using structure evaluation server ERRAT [13]. 
The final refined model was evaluated for its atomic contacts using the WhatIf program [14] to 
identify bad packing of side chain atoms or unusual residue contacts. This model was further 
subjected for molecular dynamics studies. 

 
2.3 Molecular dynamics simulation of protein 
Molecular dynamics are the computer simulation studies in which actual physical 

movements of the atoms in bio-molecular complexes are done. These interactions are important in 
simulation studies which mimic the natural body system. Thus, refinement and energy 
minimization of modeled protein was done by molecular dynamics using Groningen Machine for 
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Chemical Simulations (GROMACS) force fields [15]. In present study, GROMACS 4.0.6 
software package [16] with GROMOCS 96 force field [17] and the flexible Simple Point Charge 
(SPC) water model was used for molecular dynamics simulations. The three-site models are very 
popular for molecular dynamics simulations because of their simplicity and computational 
efficiency. In three-site models there are three interaction sites, corresponding to the three atoms of 
the water molecule. In this model each atom gets assigned a point charge, and the oxygen atom 
also gets the Lennard-Jones parameters. Most models use a rigid geometry matching the known 
geometry of the water molecule. Net charge on the protein causes electrostatic repulsion in the 
protein so that was neutralized by adding 12 Na+ ions to the simulation system. This energy 
minimization leads to removal of bad contacts and overlapping regions in proteins. The initial 
structure was immersed in a periodic water box of cubic shape (0.2 nm thick). Electrostatic energy 
was calculated using the particle mesh Ewald method [18]. Cutoff distance for the calculation of 
the coulomb and van der Waals interaction was 1.0. The final MD calculations were performed for 
20 ps. The results were analyzed using the standard software Pymol, provided by the GROMACS 
package.   

 Optimized Potentials for Liquid Simulations (OPLS-AA/L) force field adds sites in all 
atom models which allow more flexibility for charge distributions and torsional energetic over the 
atoms [19]. Hence, topology that is information about the bonds, angles and atoms of the protein 
was generated by OPLS-AA/L force field.  

 
2.4 Active site prediction 
After validation model was analyzed for the active site with Pocket finder and Q-

SiteFinder online tools. Pocket Finder [20], a program for identifying and characterizing protein 
active sites, binding sites and functional residues located on protein surfaces was used to identify 
binding pockets of STAT3 protein. Pocket-Finder works by scanning probe of radius 1.6 
angstroms along all gridlines of grid resolution 0.9 angstroms surrounding the protein. Cubic 
diagonals were also scanned by using this probe. Grid points are defined to be a part of a site when 
the probe is within range of protein atoms followed by free space followed by protein atoms. Q-
SiteFinder uses the interaction energy between the protein and a simple van der Waals probe to 
locate energetically favorable binding sites. Energetically favorable probe sites were clustered 
according to their spatial proximity. Clusters were then ranked according to the sum of interaction 
energies for sites within each cluster. 

  
 
2.5 Ligand library generation with target knowledge 
In order to generate possible inhibitors of STAT3 protein, it was essential to identify 

potential lead molecule. STAT protein family contains different subtypes of proteins viz. STAT1, 
STAT2, STAT3, STAT4, STAT5, and STAT6. There is high homology between STAT1 and 
STAT3 proteins as these proteins are phylogenetically linked [21]. By considering this fact 
Fludarabine was selected as lead molecule as its activity on STAT1 protein is already proved and 
reported in literature[22-26]. This molecule was obtained from Drug bank (accession id DB01073) 
(http://www.drugbank.ca/drugs/DB01073). This molecule was used as template to generate large 
ligands library from ZINC database similarity value of 90%. The ZINC database allows search by 
similarity value which is in multiple of 10% , if 100% is selected then there is very less probability 
of getting diverse structures with greater identity. Hence, 90% similarity value was chosen to 
maintain balance between diversity in ligands and their physicochemical properties. Moreover, by 
doing this one can avoid unwanted diversity among the screened ligands, which may occur due to 
selection of less similarity value. In addition, considering the Lipinski’s rule of five as filtering 
criteria, obtained library was further screened to get specifically drug like molecules. Finally 114 
ligands were screened out of ZINC database for further docking studies.  

2.6 Protein- ligand docking studies  
Docking studies were performed on the114 screened ligands from ZINC database on the 

modeled STAT3 protein with the help of DOCK6.4 tool.  
AMBER99-based Lennard-Jones parameters for van der Waals energy potential were used 

for grid generation. This was required to compute the contact and electrostatic potentials for the 
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Fig 5 Binding pose of the top scoring ligand (ZINC03869248) in the active site of human 
STAT3 protein cavity. (a) Pose of top scoring ligand in binding pocket. (b) Transparent 

view of binding pose of ligand in cavity. 
 

4. Discussion 
 
The 3D structure of human STAT3 has not yet been determined as it is not present in 

PDB. Therefore, we built a model following comparative modeling approach to understand the 
structure of human STAT3 protein. This model was validated with four potential computational 
tools viz. PROCHEK, ERRAT, VARIFY 3D and WHATCHECK.  Overall validation results 
confirmed that the modeled structure was reasonably good. Next step was to predict the active site 
of the modeled human STAT3. It was done with the help of Pocket Finder and Q-Sitefinder. 

This protein structure derived from molecular dynamics simulations was used for docking 
studies. As discussed in section 2.5, human STAT3 and STAT1 proteins have high degree of 
homology and Fludarabine has potential binding properties with human STAT1 protein. In view of 
this fact a library of large number of compounds was generated from ZINC database by 
considering Fludarabin as lead molecule.  To get drug like candidates this library was further 
screened on the basis of Lipinski rule of five. Finally 114 screened ligands were subjected to the 
docking studies. Among all 114 ligands top five have shown comparatively greater binding 
stability to the human modeled STAT3 protein. Among these five ligand [5-(6-aminopurin-9-yl)-
4-hydroxy-2 (phosphonooxymethyl) oxolan-3-yl] dihydrogen phosphate (Zinc03869248) showed 
comparatively most stable complex with human STAT3 protein followed by [(1R)-1-[(2S,3S,4R)-
5-(6-aminopurin-9-yl)-3,4-dihydroxy-tetrahydrofuran-2-yl]butyl] dihydrogen phosphate 
(Zinc40738189), 2-methyl-9-(5-O-phosphonopentofuranosyl)-9H-purin-6-amine (Zinc34920112), 
(6Z)-1-methyl-9-(5-O-phosphonopentofuranosyl)-1,9-dihydro-6H-purin-6-imine (Zinc62088815) 
and Phosphoric acid 5-(6-amino-purin-9-yl)-3,4-dihydroxy-tetrahydro-furan-2-ylmethyl ester 5-(6-
amino-purin-9-yl)-4-hydroxy-2-hydroxymethyl-tetrahydro-furan-3-yl ester (Zinc04773655). 

The toxicological studies of proposed drug candidates (Table 5) suggest encouraging 
results. While analyzing the toxicological outputs by TOPKAT version 3.1, it is obvious that drug 
candidates are showing comparative characteristics in almost all fronts under consideration with 
the drug Fludarabine. Among all five proposed drug candidates, ZINC03869248 ([5-(6-
aminopurin-9-yl)-4-hydroxy-2 (phosphonooxymethyl) oxolan-3-yl] dihydrogen phosphate) has 
best binding energy with modeled human STAT3 protein. In addition, this drug candidate was 
found to be preeminent in terms of carcinogenic potency TD50 in mouse (137.789 mg/kg body 
weight/day). Furthermore, oral LD50 in rats for this drug candidate was found to be 0.154 g/kg 
body weight which is closest to drug Fludarabine (DB1073) in comparison to the rest of four drug 
candidates. 
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Table 5: Various critical properties of drug candidates derived from TOPKAT version 3.1 

 
Compounds 

Aerobic 
biodegradabili

ty 

Ames 
mutagenicit

y 

Development
al toxicity 
potential 

Skin 
irritanc

y 

Carcinogenic 
potency TD50 

mouse (mg/kg body 
weight/day) 

Rat Oral 
LD50 

(g/kg body 
weight) 

DB1073 
Non-

degradable 
Non-

mutagen 
Non-toxic Irritant 6.457 0.190 

ZINC4073818
9 

Non-
degradable 

Non-
mutagen 

Non-toxic Irritant 31.725 0.709 

ZINC3492011
2 

Non-
degradable 

Non-
mutagen 

Non-toxic Irritant 38.353 0.256 

ZINC6208881
5 

Non-
degradable 

Non-
mutagen 

Non-toxic Irritant 40.328 0.608 

ZINC0477365
5 

Non-
degradable 

Non-
mutagen 

Non-toxic Irritant 1.184 0.578 

ZINC0386924
8 

Non-
degradable 

Non-
mutagen 

Non-toxic Irritant 
137.789 

 
0.154 

 
 
 
 

5. Conclusion  
 
The presented investigation provides insight into the structural properties of human 

STAT3 and defines the active binding sites. Docking studies confirmed that human STAT3 protein 
has reasonably good binding properties with considered drug candidates. Further investigations 
with these drug candidates may prove to be a novel therapeutic treatment for prevention, 
mitigation and cure of psoriasis.  
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