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The present contribution focuses on the synthesis of metallic nanoparticles of gold using 
aqueous Au+3 ions with the cell-free filtrate of Trichoderma koningii. Fourier transform 
infrared spectroscopy (FTIR spectrum) suggested that proteins are mainly responsible for 
reduction of gold ions and long-term stability of the biogenic nanoparticles. The sucrose 
density gradient technique to separate the gold nanoparticles based on their size was 
demonstrated. The smallest spheres from 10 nm to 14 nm were concentrated in the 30% 
fraction and their cytotoxicity was studied. The results suggested that the gold 
nanoparticles were taken up by the colon cancer cells via endocytosis and the filtrate 
protein is responsible for their noticeable toxicity against human cancer LoVo and 
LoVo/DX cells. 
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1. Introduction 
 
Nanoscale metal materials have been exponentially developed in recent years because of 

their unique chemical and physical properties and important applications in chemical sensing, 
biolabeling, diagnostics and therapeutics [1, 2]. Owing to the wide range of applications offered by 
metal nanoparticles in different fields of science and technology, various protocols have been 
designed for their formation [3-4]. One of the approaches is the facile synthesis carried out by 
microorganisms. In the past three decades, it has been shown that several types of bacteria, yeast 
and fungi had a high ability to synthesize various metallic nanoparticles [5-6]. Among them, molds 
have been documented as an extremely good candidate in the synthesis of these nanoscale 
materials [7-8]. The capacity for metal nanoparticles formation was detected in Verticillum 
luteoalbum [9], Fusarium oxysporum [10], Colletotrichum sp. and Tricothecium sp. [11], 
Phaenerochaete sp. [12], Trichoderma koningii [13], Aspergillus foetidus [14], Aspergillus niger  
[15, 16], Penicillium sp. [17] and Alternaria alternate [18].  

On the other hand, it is known that practical application of gold nanoparticles depends 
largely on their impact on human and environment health. Nowadays there is a wider debate about 
the possible risks associated with gold nanoparticles applications. During recent years different 
studies have been performed demonstrating that nanomaterials can affect biological behaviours at 
the cellular, subcellular and protein levels. According to Pan et al. [19] studies, smaller size 
particles have better ability to induce cytotoxicity as compared to bigger one. Moreover, the results 
obtained suggested that cationic particles are generally toxic at much lower concentrations than 
anionic particles, which they relate to the electrostatic interaction between the cationic 
nanoparticles and the negatively charged cell membranes [20]. Cytotoxicity also depends on the 
type of cells used. For example, 33 nm citrate-capped gold nanospheres were found to be 
noncytotoxic to baby hamster kidney and human hepatocellular liver carcinoma cells, but 
cytotoxic to a human carcinoma lung [21].  
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In the present study, I used the cell-free filtrate of Trichoderma koningii [13] for 
bioreduction of the gold ions resulted in extracellular formation of very stable gold nanoparticles. 
The main aim of this research was to examine in vitro toxicity of these biogenic nanostructures on 
human colon cancer cell line LoVo and multidrug resistance sub-line  LoVo/DX . My studies 
importantly approach to understand the potential toxicity hazards of this biogenic material.  

 
 
2. Materials and methods 
 
Reagents 
All chemical agents including chloroauric acid (HAuCl4 x 4H2O) were obtained from 

(POCH) Poland.  
 Synthesis and characterization of the gold nanoparticles  
Trichoderma koningii strain, isolated from the soil have been used in the study [13]. The 

basal medium used in experiments consisted of (%) : KH2PO4 0.7 ; K2HPO4 0.2; MgSO4 7H2O 
0.01;  NH4Cl  1.0;  yeast extract 0.06;  glucose 1.0. The Erlenmeyer flasks were inoculated with 
spores (105/mL) of Trichoderma koningii and incubated at 280 C with shaking (200 rpm) for 5 
days. After the fermentation time, the biomass was filtered (Whatman filter paper No. 1) and then 
extensively washed with distilled water to remove any medium component. Fresh and clean 
biomass (10 g) was taken into the Erlenmeyer flask, containing 100 mL of Milli-Q deionised water 
(UV Ultrapure Water System, Burnstead, USA). The flask was agitated at 28 oC with shaking (100 
rpm) for 48 h. The cell-free filtrate was collected by pre-filtration in Whatman No. 1 filter papers 
and filtered using Millex-GP filter (PES membrane, 0.22 μm). Chloroauric acid (1 mM of final 
concentration) was mixed with the cell-free filtrate in an Erlenmeyer flask and agitated at 28 o C in 
dark. The control (without the cell-free filtrate) was also run along with the experimental flasks. 
To verify reduction of gold ions the solutions were scanned in the range of 200-800 nm in a 
spectrophotometer (Shimadzu, UV 3600). The size and morphology of the nanoparticles were 
analyzed with the transmission electron microscope TEM (Zeiss EM 900). The sample was 
prepared by placing a drop of the gold nanoparticles on a carbon-coated copper grid and 
subsequently drying in air before transferring it to the microscope. From electron micrographs the 
particle size was found for no less than 150 particles. 

 
Separation of the gold nanoparticles  
The separation of the gold nanoparticles was performed according to the method described 

by Kumar et al. [22] with minor modifications. In detail, we created a discontinous sucrose density 
gradient by layering dilute sucrose solutions upon one another in a centrifuge tube: 7 mL of 30%, 
40%, 50% and 60% w/v sucrose. Finally 7 mL of the gold nanoparticles synthesized by the cell-
free filtrate obtained from 5-days biomass cultured in media contained NH4Cl as nitrogen source 
with intensive shaking (AuNPs) was loaded onto this gradient and centrifuged at 2320 x g at 10 oC 
for 1h. Fractions of the gradient were collected using a pipette, dialyzed (MWCO 8000-10000) 
against Milli-Q deionised water at room temperature and lyophilized (Freeze Dryer Modulyo, 
Edwards). These particles were made in a KBr pellet and the spectrum was recorded with FTIR 
spectrometer (Perkin Elmer 1600). The stability study of the gold nanoparticles was carried out at 
room temperature. The change in surface plasmon resonance of the nanoparticle dispersion was 
recorded up to six month using UV-vis spectroscopy.  Zeta potential of the gold nanoparticles 
concentrated in the 30% sucrose fraction (AuNPs-30) was determined using Zetasizer 2000, 
Malvern Instruments. 

  
Assessment of cytotoxic effect  
Human colon adenocarcinoma cell line LoVo and multidrug resistance sub-line  LoVo/DX 

used in our experiments were kindly provided by Joanna Wietrzyk, professor of the Ludwik 
Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Science, 
Wrocław. The studied cancer cells were cultured in OptiMEM+RPMI 1640 medium (1:1) 
supplement with 5% heat-inactivated foetal bovine serum, 1% of 2 mM L-glutamine and 1% of 
1mM sodium pyruvate, 100 IU/ml penicillin and 100 μg/ml streptomycin.  
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As shown gold ions were reduced during exposure to the Trichoderma koningii cell-free 

filtrate. The nanoparticles formation was visually observed by the color of the reaction mixture 
changing from colorless to red. A characteristic of all gold colloids is the color which can vary 
between light red via purple-red to bluish-red [24]. This effect is caused by a surface plasmon 
resonance (SPR) described by the Mie theory [25]. The appearance of red color in solution 
containing the cell free filtrate of Trichoderma koningii and gold ions suggested the formation of 
colloidal gold nanoparticles in the medium. According to the Mie theory, spherical gold 
nanoparticles exhibit only one SPR band, usually in the region of 500-600 nm, whereas anisotropic 
particles show two or three bands. Figure 1 shows the UV-vis absorption spectrum recorded from 
the gold nanoparticles solution after 24 h of reaction. The results indicate that the reaction solution 
has an absorption maximum at about 524 nm attributed to the surface plasmon resonance band of 
the gold nanoparticles. 
 

 
 

Fig. 1. UV-vis spectrum of the gold nanoparticles synthesized by the cell-free  
filtrate of  Trichoderma koningii 

 
 

For separation of gold particles synthesized the sucrose gradient technique was applied. 
This method is often used to separate organelles or viruses by ultracentrifugation. It was possible 
to  separate the nanoparticles based on their size by a density gradient of 30% to 70% sucrose 
using centrifuge with low speeds. Fractions of 3,5 mL were collected and monitored for separation 
by TEM technique. Figure 2A shows that AuNPs are symmetrical and spherical shaped, well 
distributed without aggregation in solution with average size is about 14±4 nm. Spheres from 10 
nm to 14 nm were concentrated in the 30% fraction (Figure 2B) and spheres from 12 nm to 17 nm 
in the 40% (Figure 2C). Gold nanoparticles have not been observed in fractions 50%-70%.  
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Fig. 2. TEM images of gold nanoparticles synthesized by the cell-free filtrate of 
Trichoderma  koningii:  (A)  before concentration (A); from fraction collected at 30% (B);  

from fraction collected at 40% (C) 
 

 
In comparison with other separation protocols such as electrophoresis [26, 27], 

diafiltration [27], chromatography [29], sucrose density gradient separation is easier to carry out 
and takes less time.  

It is well-known that the practical application of gold nanoparticles significantly depends 
on their time-dependent stability. To investigate the stability of gold nanostructures, the particles 
concentrated in the 30% sucrose fraction were stored at room temperature for the period of 6 
months. Any precipitation is not observed even after 6 months of storage suggesting that these 
colloidal gold nanoparticles are extremely stable. Such long-term stability of the particles indicated 
that nanostructures are stabilized in the solution by the capping agent, which is likely to be protein 
secreted by Trichoderma koningii. FTIR spectroscopy measurements were carried out to identify 
the molecules that bound specially on the gold surface. Representative spectrum of the obtained 
nanoparticles shows the presence of absorption peaks located at about 3410 cm-1 , 1560 cm-1, 1350 
cm-1 and 1065 cm-1 (Figure 3).   

 
Fig. 3. FTIR spectrum of AuNPs-30 
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extracellular materials, particularly nanoparticles [33]. The mechanism of uptake can be dependent 
on many factors, such as, the physiochemical properties of gold nanoparticles (size and surface 
properties) and cell type. For example, Rejman  et al. showed that the particles of sizes between 50 
to 200 nm were taken up primarily by clathrin-mediated endocytosis, while particles of size 500 
nm and above were taken up in a caveolin-dependent fashion [34]. Clathrin-mediated endocytosis 
occurs when gold nanoparticles accumulate on the cell membrane and clathrin-coated pits are 
formed to transport the NPs into the cell, resulting in the formation of endosomes.  
 

 
 

Fig. 5. TEM images of Lovo cancer cells incubated with AuNPs-30: (A) after 2h; (B) after 24h 
 

The cytotoxic potential of CF, AuNPs and AuNPs-30 against human cancer cell line LoVo 
and sub-line LoVo/DX was examined using SRB method [23]. This well-known colorimetric 
assay estimates cell number indirectly by staining total cellular protein with the dye SRB 
(sulphorhodamine B is a bright pink aminoxanthine dye). In our study, the cells were treated with 
different concentrations of AuNPs, AuNPs-30 and CF for 72 hours. The proportions of surviving 
cells were then estimated and IC50 values (concentrations leading to 50% inhibition of viability) 
were calculated (Table 1). The data show that the cell-free filtrate strongly and specifically 
inhibited the proliferation of both cell lines (LoVo and Lovo/DX) with their IC50 values of  
 

Table 1. Cytotoxicity of the cell-free filtrate and gold nanoparticles against colon cancer cell 
lines LoVo and LoVo/DX 

 
IC50 [μg/ml]   

                     LoVo           LoVo/DX 
CF 1                     14.15±2.2  
AuNPs 2              33.04±4.9 
AuNPs-30 3         186.5±7.3

 4.01±1.7 
28.88±2.9 
146.0±6.9 

 
1 The cell-free filtrate of Trichoderma koningii 
2 The gold nanoparticles synthesized by the cell-free filtrate  of Trichoderma koningii 
3 The gold particles concentrated in the 30% sucrose fraction  
 

14.15±2.2 µg/mL and 4.01±1.7 µg/ mL, respectively, indicating the presence of cytotoxic 
compounds in the filtrate of Trichoderma koningii. In SRB assay, AuNPs were able to suppress 
proliferation of Lovo/DX cells more effectively than LoVo, with their IC50 values of 28.88±2.9 
μg/mL and 33.04±4.9 μg/mL, respectively. Moreover, the results obtained reveal that AuNPs-30 
have no significant cytotoxic effect on the cancer cells tested. Calculated values of IC50 are 
186.5±7.3 μg/mL and 146.0±6.9 μg/mL against LoVo and LoVo/DX, respectively (Table 1). It 
was quantitatively confirmed that the filtrate protein in the gold nanoparticles synthesized by 
Trichoderma koningii is responsible for their noticeable cytotoxicity. These results strongly 
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highlight the importance of comparing the cell-free filtrate toxicity with the original nanoparticle 
solution as a precious control experiment to understand the origin of the nanoparticles toxicity.  

 
Conclusions  
  
The results presented support the hypothesis that gold nanoparticles can be prepared and 

separated in a simple, eco-friendly and cost-effective manner. The simply sucrose density gradient 
technique to separate the gold nanoparticles based on their size could be successfully applied. 
Intracellular distribution of the smallest gold nanospheres has been studied with the general 
conclusion that these nanostructures are able to enter cancer LoVo cells and are trapped in 
vesicles, but are not able to enter the nucleus. Moreover, experimental results strongly indicate that 
the cell-free filtrate of Trichoderma koningii is responsible for the cytotoxicity of the gold 
nanoparticles against human cancer cell line LoVo and sub-line LoVo/DX. Even though these 
results may not accurately predict the in vivo toxicity it does provide a basis for understanding the 
mechanism of toxicity of nanoparticle uptake at the cellular level.  
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