THE K-CONNECTIVITY INDEX OF AN INfiNITE CLASS OFDENDRIMER NANOSTARS

WEIQING WANG, XINMIN HOU*, WENJIE NING
Department of Mathematics, University of Science and Technology of China, Hefei 230026, P.R.China

The k-connectivity index ${ }^{k} \chi(\mathrm{G})$ of a molecular graph G is the sum of the weights $\left(d_{v 1} d_{v 2} \cdots d_{v k+1}\right)^{-1 / 2}$, where $v_{1} v_{2} \cdots v_{k+1}$ runs over all paths of length k in G and $d_{v i}$ denotes the degree of vertex vi. In this paper, we give the explicitly formula of the k-connectivity index of a finite class of dendrimer s, which generalized Ahmadiand Sadeghimehr's result [Second-order connectivity index of an irfinite class of dendrimer nanostars, Dig. J. Nanomater Bios., 2009].
(Received June 14, 2011; accepted August 23, 2011)
Keywords: Dendrimer, k-Connectivity Index

1 Introduction

A dendrimer is generally described as a macromolecule, which is characterized by its highly branched 3D structure that provides a high degree of surface functionality and versatility. It is constructed through a set of repeating chemical synthesis procedures that build up from the molecular level to the nanoscale region under the condition that is easily performed in a standard organic chemistry laboratory.

Dendrimers have often been referred to as the"Polymers of the 21st century". Dendrimer chemistry was first introduced in 1978 by Buhleier, Wehner, and Vogtle [3], and in 1985, Tomalia et al [14] synthesized the first family of dendrimers. In 1990, a convergent synthetic approach was introduced by Hawker and Frechet [4]. Dendrimer popularity then greatly increased, resulting in a large number of scientific papers and patents.

Let G be a simple connected graph of order n. In 1975, Randic [10] introduced the connectivity index (now called also Randic index) as ${ }^{1} \chi(G)=\sum_{u v} \frac{1}{\sqrt{d_{u} d_{v}}}$, where uv runs over all edges of G. This index has been successfully related to chemical properties, namely if G is the molecular graph of an alkane, then ${ }^{1} \chi(\mathrm{G})$ has a strong correlation with the boiling point and the stability of the compound [8, 9, 12].

The k-connectivity index of an organic molecule whose molecule graph is G is defined
As

$$
{ }^{1} \chi(G)=\sum_{v_{1} v_{2} \cdots v_{k+1}}\left(d_{v 1} d_{v 2} \ldots d_{v k+1}\right)^{-\frac{1}{2}}
$$

where $\mathrm{v}_{1} \mathrm{v}_{2} \cdots \mathrm{v}_{\mathrm{k}+1}$ runs over all paths of length k in G and d_{vi} denotes the degree of vertex v_{i}. The higher connectivity indices are of great interest in molecular graph theory, one can refer [6] and [13] for more details, and some of their mathematical properties have been reported in [2, 5, 7, 11].

In [1], Ahmadi and Sadeghimehr determined the 2-connectivity index of an iffinite class of dendrimer nanostars. In this paper, we give the exact value of the k-connectivity index of such dendrimers for a nonnegative integer k , which generalize Ahmadi and Sadeghimehr's result.

[^0]
2. Main results

Let $\mathrm{D}[\mathrm{n}]$ denote a type of dendrimer with n growth stages, $\mathrm{D}[2], \mathrm{D}[3]$ and $\mathrm{D}[5]$ are shown in Fig.1. The dendrimer $\mathrm{D}[\mathrm{n}]$ can be constructed recursively: set $\mathrm{D}[1]$:= $\mathrm{K}_{1,4}$ the star with four leaves (vertices of degree one), and $\mathrm{D}[\mathrm{n}+1]$ is obtained from $\mathrm{D}[\mathrm{n}]$ by adding two new independent vertices adjacent to each of the leaves of $\mathrm{D}[\mathrm{n}]$. The unique vertex of degree four in $D[n]$ is called the center of $D[n]$.

Fig. 1
For a given positive integer k, let $P^{(n)}{ }_{i 1}$ i2 $\ldots,{ }_{i k+1}$ denote the number of paths composed by $k+1$ consecutive vertices of degree $i_{1}, i_{2}, \cdots, i_{k+1}$, respectively in $D[n]$. Since $D[n]$ is undirected, $P^{(n)}{ }_{i 1}$ ${ }_{\mathrm{i} 2}, \ldots \mathrm{ik}+1=\mathrm{P}^{(\mathrm{n})}{ }_{\mathrm{ik}+1 \mathrm{ik} \ldots \ldots 1}$.
We compute $\mathrm{P}_{\mathrm{ili2} 2 \cdots i \mathrm{ik}+1}$ according to the choices of $\mathrm{i}_{1} \mathrm{i}_{2} \cdots \mathrm{i}_{\mathrm{k}+1}$.

Such a path must start from a leaf, then $\mathrm{k} / 2$ steps toward to the center and $\mathrm{k} / 2$ steps away from the center. There are $4 \cdot 2 \pi 1$ ways to choose an end of such a path (as there are $4 \cdot 2 \pi 1$ leaves). Then the following $\mathrm{k} / 2$ consecutive vertices are uniquely determined (toward the center). Since the next step must toward the reverse direction, this vertex again is determined uniquely. For each of the remaining $\mathrm{k}-1$ vertices, there are two choices, so there are totally $2^{\mathrm{k} 2-1}$ ways to choose them. By the symmetry, each path is calculated twice. Hence

$$
P^{(n)}{ }_{13 \ldots 31}=4 \cdot 2^{n-1} \cdot 2^{\frac{k}{2}-1} \cdot \frac{1}{2}=2^{\frac{k}{2}+n-1}, 2 \leq k \leq 2 n-2
$$

II. \quad. Such paths exist if and ${ }^{2}$ nly if $\mathrm{k}=\mathrm{n}$.

$$
i_{1} i_{2} \cdots i_{k+1}=1 \underbrace{3 \cdots 3} 4
$$

Such a path is uniquely ${ }^{k}$ determined by the end of degree one. So
III.

By the recursion of $D[n]$, such a path can be seen as a path in $D[k]$ of type $13 \cdots 34$. Hence, by II,

$$
P^{(n)}{ }_{33 \cdots 34}=P^{(k)}{ }_{13 \cdots 34}=2^{k+1}, 1 \leq k \leq n-1
$$

$\begin{array}{l}\text { IV. } \\ =2 n .\end{array} i_{1} i_{2} \cdots i_{k+1}=1 \underbrace{3 \cdots 3}_{k_{1}} 4 \underbrace{3 \cdots\left(k_{3}\right.}_{k_{2}}+k_{2}=k-2)$. Such paths exist if and only if $k_{1}=k_{2}=n-1$ and k Such a path is composed by two symmetric segments of length $\mathrm{k}_{2}=\mathrm{n}$, each segment can be considered as a path from the center to a vertex of degree one. There are choices for the first vertex adjacent to the center of the two segments. For each of the remaihing $\mathrm{k}-2$ vertices in the two segments, there are two choices to take them. Hence

$$
P_{13 \cdots 4 \cdots 31}^{(n)}=\binom{4}{2} \cdot 2^{k-2}=3 \cdot 2^{k-1}, k=2 n
$$

V. $i_{1} i_{2} \cdots i_{k+1}=1 \underbrace{3 \cdots 3}_{k_{1}} 4 \underbrace{3 \cdots 3}_{k_{2}}\left(\mathrm{k}_{2} \geq 1, \mathrm{k}_{1}+\mathrm{k}_{2}=\mathrm{k}-1\right)$. Such paths exist if and only if $\mathrm{k}_{1}=\mathrm{n}-1, \mathrm{k}_{2}=$ $\mathrm{k}-\mathrm{n}, \mathrm{n}+1 \leq \mathrm{k} \leq 2 \mathrm{n}-1$.
Such a path is composed by two segments of length $\mathrm{k}_{1}+1$ and k_{2}, respectively, each of which starts from the center. The difference between the case from case IV is that the two segments are not symmetric. So, by a similar reason as in IV,

VI.

$$
\begin{gathered}
P_{13 \cdots 4 \cdots 3}^{(n)}=4 \cdot 3 \cdot 2^{k-2}=3 \cdot 2^{k}, n+1 \leq k \leq 2 n-1 \\
i_{1} i_{2} \cdots i_{k+1}=1 \underbrace{3 \cdots 3}_{k_{1}} 4 \underbrace{3 \cdots 3}_{k_{2}}
\end{gathered}
$$

(VI.1) k is even and $1 \leq \mathrm{k} \leq \mathrm{n}-1$.

Such a path must start from a vertex of degree one to a vertex of degree three with $\mathrm{k} / 2+1$ steps toward to the center, then $\mathrm{k} / 2-1$ steps toward or away from the center. There are $4 \cdot 2^{\mathrm{n}-1}$ choices for the vertex of degree one, and the first $k / 2+2$ vertices are uniquely determined once the starting vertex of degree one has been chosen. For each of the remaining $k / 2-1$ vertices, there are two choices. So
(VI.2) k is even and $\mathrm{A}_{\mathrm{n}}^{(n)} \mathrm{l}_{3 \leq} \cdot 2 n=4.4 \cdot 2^{n-1} \cdot 2^{\frac{k}{2-1}}=2^{\frac{k}{2}+n}$

Such a path must start from a vertex of degree one to a vertex of degree three with i steps with $k / 2+1 \leq i \leq n-1$ toward the center, then $k-i$ steps away from the center. There are $4 \cdot 2 n-1$ ways to choose the vertex of degree one, and the first $i+2$ vertices (including the first vertex chosen for the reverse direction) are uniquely determined once the starting vertex of degree one has been chosen. For each of the remaining $\mathrm{k}-\mathrm{i}-1$ vertices, there are two choices. So,

$$
P_{13 \cdots 33}^{(n)}=4 \cdot 2^{n-1} \cdot \sum_{i=k / 2+1}^{n-1} 2^{k-i-1}=2^{\frac{k}{2}+n}-2^{k+1}
$$

With a similar discussion as in (VI.1) and (VI.2), respectively, we have the following two formulas when k is odd.
(VI.3) k is odd and $1 \leq \mathrm{k} \leq \mathrm{n}-1$

$$
P^{(n)}{ }_{13 \cdots 33}=4 \cdot 2^{n-1} \cdot 2^{\frac{k-1}{2}}=2^{\frac{k+1}{2}+n}
$$

(VI.4) k is odd and $\mathrm{n} \leq \mathrm{k} \leq 2 \mathrm{n}-3$
VII.

$$
P^{(n)}{ }_{13 \cdots 33}=4 \cdot 2^{n-1} \cdot \sum_{i=(k+1) / 2}^{n-1} 2^{k-i-1}=2^{\frac{k+1}{2}+n}-2^{k+1}
$$

$$
i_{1} i_{2} \cdots i_{k+1}=\underbrace{3 \cdots 3}_{k+1}
$$

(VII.1) k is even. Such a path exists if and only if $k \leq 2 n-4$, that is $n \geq k+4$

If $k=2 n-4$, i.e. $n=(k+4) / 2$, by the recursion of $D[n]$, such a path corresponds to a path of type $13 \cdots 31$ of length k in $D[n-1]$. Hence, by I

$$
P^{(n)}{ }_{13 \cdots 33}=P^{\left(\frac{k+4}{2}\right)}{ }_{33 \cdots 33}=P^{\left(\frac{k+4}{2}-1\right)}{ }_{13 \cdots 31}=2^{\frac{k}{2}+\frac{k+4}{2}-1-1}=2^{k},(k=2 n-4)
$$

If $k<2 n-4$, i. e. $n>(k+4) / 2$, by the recursion of $D[n]$, a $3 \cdots 3$ path in $D[n]$ is either a $3 \cdots 3$ path in $D[n-1]$, or a $13 \cdots 31$ path in $D[n-1]$, or a $13 \cdots 3$ path in $D[n-1]$. So,

$$
\begin{equation*}
P^{(n+1)}{ }_{33 \cdots 33}=P^{(n)}{ }_{33 \cdots 33}+P_{13 \cdots 31}^{(n)}+P_{13 \cdots 33}^{(n)} \tag{1}
\end{equation*}
$$

Using (1) recursively, and by I and VI, we have

$$
\begin{aligned}
& P^{(n)}{ }_{33 \cdots 33}=P^{\left.\frac{(k+4}{2}\right)}{ }_{33 \cdots 33}+\sum_{i=\frac{k+4}{2}}^{n-1}\left(P^{(i)}{ }_{13 \cdots 31}+P^{(i)}{ }_{13 \cdots 33}\right) \\
& =\left\{\begin{array}{c}
2^{k}+\sum_{i=\frac{k+4}{2}}^{n-1}\left(3 \cdot 2^{\frac{k}{2}+i-1}-2^{k+1}\right), k \geq n \\
2^{k}+\sum_{i=\frac{k+4}{2}}^{k}\left(3 \cdot 2^{\frac{k}{2}+i-1}-2^{k+1}\right)+\sum_{i=k+1}^{n-1} 3 \cdot 2^{\frac{k}{2}+i-1}, k \leq n-1
\end{array}\right. \\
& =\left\{\begin{array}{c}
3 \cdot 2^{n+\frac{k}{2}-1}-(2 n+1-k) \cdot 2^{k}, n \leq k \leq 2 n-4 \\
3 \cdot 2^{n+\frac{k}{2}-1}-(3+k) \cdot 2^{k}, k \leq n-1
\end{array}\right.
\end{aligned}
$$

(VII.2) k is odd. Such paths exist if and only if $\mathrm{k} \leq 2 \mathrm{n}-5$, that is $\mathrm{n} \geq(\mathrm{k}+5) / 2$.

If $\mathrm{k}=2 \mathrm{n}-5$ and $\mathrm{k} \geq 3$, such a path can be considered as a path of type $13 \cdots 3$ of length k in $\mathrm{D}[\mathrm{n}-1]$.
So, by (VI.4),

$$
P^{(n)}{ }_{3 \cdots 3}=P^{\left(\frac{k+5}{2}\right)}{ }_{3 \cdots 3}=P^{\left(\frac{k+5}{2}-1\right)}{ }_{13 \cdots 3}=2^{\frac{k+1}{2}+\frac{k+5}{2}-1}-2^{k+1}=2^{k+1}
$$

If $3 \leq k<2 n-5$ i.e. $n \geq(k+5) / 2+1 \geq 5$, such a path corresponds to either a path of type $3 \cdots 3$ in $D[n-1]$ or a path of type $13 \cdots 3$ in $D[n-1]$. So

$$
\begin{equation*}
P_{3 \cdots 3}^{(n)}=P_{3 \cdots 3}^{(n-1)}+P_{13 \cdots 3}^{(n-1)} \tag{2}
\end{equation*}
$$

Applying (2) recursively and by VI,

$$
\begin{aligned}
P^{(n)}{ }_{3 \cdots 3}= & P^{\left(\frac{k+5}{2}\right)}{ }_{3 \cdots 3}+\sum_{i=\frac{k+5}{n-1} P^{(i)}{ }_{13 \cdots 3}}^{2^{k+1}+\sum_{i=\frac{k+5}{2}}^{n-1}\left(2^{\frac{k+1}{2}+i}-2^{k+1}\right), n \leq k \leq 2 n-5} \\
& =\left\{\begin{array}{c}
2^{k+1}+\sum_{i=\frac{k+5}{k}}^{k}\left(2^{\frac{k+1}{2}+i}-2^{k+1}\right)+\sum_{i=k+1}^{n-1} 2^{\frac{k+1}{2}+i}, 3 \leq k \leq n-1
\end{array}\right. \\
& =\left\{\begin{array}{c}
2^{n+\frac{k+1}{2}}-(2 n+1-k) \cdot 2^{k}, n \leq k \leq 2 n-5 \\
2^{n+\frac{k+1}{2}}-(3+k) \cdot 2^{k}, 3 \leq k \leq n-1
\end{array}\right.
\end{aligned}
$$

If $\mathrm{k}=1$ and $\mathrm{n}=3$, such a path can be considered as a path of type 13 in $\mathrm{D}[2]$. By (VI.3),
Applying (2) recursively and again by VI,

$$
\begin{gathered}
P^{(3)}{ }_{33}=2^{3} \\
\left.P^{(n)}=P^{(33}\right)+\sum_{i=3}^{n-1} P^{(i)}{ }_{13}
\end{gathered}
$$

$$
=\left\{\begin{array}{l}
2^{n+1}-8, n \geq 3 \\
2^{8,}+2^{1}+2 \ldots+2^{n}
\end{array}\right.
$$

Therefore, we have

$$
P_{3 \cdots 3}^{(n)}=\left\{\begin{array}{c}
2^{n+\frac{k+1}{2}}-(2 n+1-k) \cdot 2^{k}, n \leq k \leq 2 n-5 \\
2^{n+\frac{k+1}{2}}-(3+k) \cdot 2^{k}, 1 \leq k \leq n-1
\end{array}\right.
$$

VIII. $i_{1} i_{2} \cdots i_{k+1}=\underbrace{3 \cdots 3}_{k_{1}} 4 \underbrace{3 \cdots 3}_{k_{2}}$, where $\mathrm{k}_{1}+\mathrm{k}_{2}=\mathrm{k}, \mathrm{k}_{1} \geq 1, \mathrm{k}_{2} \geq 1$

By the symmetry of k_{1} and k_{2}, we may assume $k_{1} \geq k_{2}$.
(VIII.1) k is even

If $k_{1}=k_{2}=k / 2$, such a path can be seen as a path of type $13 \cdots 343 \cdots 31$ in $D[k / 2]$.
By IV,

$$
P^{(n)}{ }_{3 \cdots 343 \cdots 3}=P^{(k / 2)}{ }_{13 \cdots 343 \cdots 3}=3 \cdot 2^{k-1}
$$

If $k_{1}>k_{2}$, that is $k_{1} \geq k / 2+1$, such a path can be seen as a path of type $13 \cdots 343 \cdots 3$ in $D\left[k_{1}\right]$. By \mathbf{V},

If $\mathrm{k} \leq \mathrm{n}$, then

$$
P^{(n)}{ }_{3 \cdots 343 \cdots 3}=P_{13 \cdots 343 \cdots 3}^{\left(k_{1}\right)}=3 \cdot 2^{k}
$$

$$
\begin{aligned}
P^{(n)}{ }_{3 \cdots 34 \cdots 3} & =P^{(k / 2)}{ }_{13 \cdots 343-k-31}^{13}+\sum_{3_{1} \cdots 2^{k / 3+1}}^{k-1} P^{\left(k_{1}\right)}{ }_{13 \cdots 343 \cdots 3} \\
& =3 \cdot 2^{k-1}+\sum_{k_{1}=k / 2+1} \\
& =3(k-1) 2^{k-1}
\end{aligned}
$$

If $n+1 \leq k \leq 2 n-2$, then

$$
\begin{aligned}
P^{(n)}{ }_{3 \cdots 343 \cdots 3} & =P^{(k / 2)}{ }_{13 \cdots 343 \cdot n 31}^{k-1}+\sum_{k_{1}=2^{k / 2+1}}^{n-1} P^{\left(k_{1}\right)}{ }_{13 \cdots 343 \cdots 3} \\
& =3 \cdot 2^{k-1}+\sum_{k_{1}=k / 2+1} \\
& =3(2 n-k-1) 2^{k-1}
\end{aligned}
$$

(VIII.2) k is odd

Similarly as in (VIII.1) (the only difference is $\mathrm{k}_{1} \neq \mathrm{k}_{2}$ in this case), we have
and

$$
P_{3 \cdots 34 \cdots 3}^{(n)}=\sum_{\substack{k_{1}=(k+1) / 2 \\-2(l)}}^{k-1} P^{\left(k_{1}\right)}{ }_{13 \cdots 343 \cdots 3}=\sum_{k_{1}=(k+1) / 2}^{k-1} 3 \cdot 2^{k_{1}}
$$

$$
\begin{aligned}
P^{(n)}{ }_{3 \cdots 343 \cdots 3} & =\sum_{k_{1}=(k+1) / 2}^{n-1} P^{\left(k_{1}\right)}{ }_{13 \cdots 343 \cdots 3}=\sum_{k_{1}=(k+1) / 2}^{n-1} 3 \cdot 2^{k_{1}} \\
& =3(2 n-k-1) 2^{k-1}
\end{aligned}
$$

Based on the above computations, we can get the formula of the k-connected index of $\mathrm{D}[\mathrm{n}]$ for any nonnegative integer k .
Theorem 2.1 Given a positive integer n, the k-connected index of $\mathrm{D}[\mathrm{n}]$ for any nonnegative integer k are listed in Table 1.
Proof: If $k=0$, let ni denote the number of vertices of degree i in $D[n]$, then $n_{1}=2^{n+1}, n_{3}=2^{2}$ $+\cdots+2^{n}=2^{n+1}-4$, and $n_{4}=1$ from the definition of $D[n]$. Hence

$$
{ }^{0} \chi(D[n])=\frac{2^{n+1}}{\sqrt{1}}+\frac{2^{n+1}-4}{\sqrt{3}}+\frac{1}{\sqrt{4}}=3^{-\frac{1}{2}}\left(2^{n+1}-4\right)+2^{n+1}+2^{-1}
$$

If $1 \leq k \leq n-1$ and k is even, then the possible types of all paths of length k in $D[n]$ are $13 \cdots 31$, $3 \cdots 34,13 \cdots 3,3 \cdots 3$ and $3 \cdots 343 \cdots 3$. By I, III, (VI.1), (VII.1) and (VIII.1),

$$
P_{13 \cdots 31}^{(n)}=2^{\frac{k}{2}+n-1}, P^{(n)}{ }_{33 \cdots 34}=2^{k+1}, P_{33 \cdots 33}^{(n)}=3 \cdot 2^{\frac{k}{2}+n-1}-(3+k) \cdot 2^{k}, P^{(n)}{ }_{13 \cdots 33}=2^{\frac{k}{2}+n}
$$

and $P^{(n)}{ }_{3 \cdots 4 \cdots 3}=3(k-1) \cdot 2^{k-1}$, respectively. So,

$$
\begin{aligned}
{ }^{k} \chi(D[n])= & 2^{n+\frac{k}{2}-1} \frac{1}{\sqrt{3^{k-1}}}+2^{n+\frac{k}{2}} \frac{1}{\sqrt{3^{k}}}+2^{k+1} \frac{1}{\sqrt{4 \cdot 3^{k}}} \\
& +\left[3 \cdot 2^{n+\frac{k}{2}-1}-(3+k) \cdot 2^{k}\right] \frac{1}{\sqrt{3^{k+1}}}+3(k-1) \cdot 2^{k-1} \frac{1}{\sqrt{4 \cdot 3^{k}}} \\
= & \frac{\sqrt{3}+1}{\sqrt{3^{k}}} 2^{n+\frac{k}{2}}+\frac{(3 \sqrt{3}-4) k+(\sqrt{3}-12)}{\sqrt{3^{k+1}}} 2^{k-2}
\end{aligned}
$$

If $1 \leq \mathrm{k} \leq \mathrm{n}-1$ and k is odd, then the possible types of all paths of length k in $\mathrm{D}[\mathrm{n}]$ are $3 \cdots 34,13 \cdots 3,3 \cdots 3$ and $3 \cdots 343 \cdots 3$ By III, (VI.3), (VII.2) and (VIII.2), $P^{(n)}{ }_{33 \cdots 34}=2^{k+1}$, $P^{(n)}{ }_{13 \cdots 33}=2^{\frac{k+1}{2}+n}, P^{(n)}{ }_{33 \cdots 33}=2^{\frac{k+1}{2}+n}-(3+k) \cdot 2^{k}$ and $P^{(n)}{ }_{3 \cdots 4 \cdots 3}=3(k-1) \cdot 2^{k-1}$, respectively. So,

$$
\begin{aligned}
& { }^{k} \chi(D[n])=2^{k+1} \frac{1}{\sqrt{4 \cdot 3^{k}}}+2^{n+\frac{k+1}{2}} \frac{1}{\sqrt{3^{k}}}+ \\
& \quad+\left[2^{n+\frac{k+1}{2}}-(3+k) \cdot 2^{k}\right] \frac{1}{\sqrt{3^{k+1}}}+3(k-1) \cdot 2^{k-1} \frac{1}{\sqrt{4 \cdot 3^{k}}} \\
& \quad=\frac{\sqrt{3}+1}{\sqrt{3^{k+1}}} 2^{n+\frac{k+1}{2}}+\frac{(3 \sqrt{3}-4) k+(\sqrt{3}-12)}{\sqrt{3^{k+1}}} 2^{k-2}
\end{aligned}
$$

The other formulas can be verified similarly.

Table 1: formula of k-connected index of $D[n]$

k		
$\mathrm{k}=0$		$\frac{\sqrt{3}+1}{\sqrt{3}} 2^{n+1}+\frac{\sqrt{3}-8}{2 \sqrt{3}}$
$1 \leq \mathrm{k} \leq \mathrm{n}-1$	odd	$\frac{\sqrt{3}+1}{\sqrt{3^{k+1}}} 2^{n+\frac{k+1}{2}}+\frac{(3 \sqrt{3}-4) k+(\sqrt{3}-12)}{\sqrt{3^{k+1}}} 2^{k-2}$
	even	$\frac{\sqrt{3}+1}{\sqrt{3^{k}}} 2^{n+\frac{k}{2}}+\frac{(3 \sqrt{3}-4) k+(\sqrt{3}-12)}{\sqrt{3^{k+1}}} 2^{k-2}$
$\mathrm{k}=\mathrm{n}$	odd	$\frac{\sqrt{3}+1}{\sqrt{3^{k+1}}} 2^{\frac{3 k+1}{2}}+\frac{(3 \sqrt{3}-4) k+(8-11 \sqrt{3})}{\sqrt{3^{k+1}}} 2^{k-2}$
	even	$\frac{\sqrt{3}+1}{\sqrt{3^{k}}} 2^{\frac{3}{2} k}+\frac{(3 \sqrt{3}-4) k+(8-11 \sqrt{3})}{\sqrt{3^{k+1}}} 2^{k-2}$
$\mathrm{n}+1 \leq \mathrm{k} \leq 2 \mathrm{n}-4$	odd	$\frac{\sqrt{3}+1}{\sqrt{3^{k+1}}} 2^{n+\frac{k+1}{2}}+\frac{(6 \sqrt{3}-8) n-(4-3 \sqrt{3}) k+(14-11 \sqrt{3})}{\sqrt{3^{k+1}}} 2^{k-2}$

	even	$\frac{\sqrt{3}+1}{\sqrt{3^{k}}} 2^{n+\frac{k}{2}}+\frac{(6 \sqrt{3}-8) n-(4-3 \sqrt{3}) k+(14-11 \sqrt{3})}{\sqrt{3^{k+1}}} 2^{k-2}$
$\mathrm{k}=2 \mathrm{n}-3$	$\frac{3 \sqrt{3}+7}{\sqrt{3^{k}}} 2^{k-1}$	
$\mathrm{k}=2 \mathrm{n}-2$	$\frac{3 \sqrt{3}+10}{\sqrt{3^{k-1}}} 2^{k-2}$	
$\mathrm{k}=2 \mathrm{n}-1$	$\frac{1}{\sqrt{3^{k-3}}} 2^{k-1}$	
$\mathrm{k}=2 \mathrm{n}$	$\frac{1}{\sqrt{3^{k-4}} 2^{k-2}}$	
$\mathrm{k}>2 \mathrm{n}$	0	

References

[1] M. B. Ahmadi, M. Sadeghimehr, Dig. J. Nanomater. Bios., 4(4), 639(2009).
[2] O. Araujo and J. A. de la Pe~na, Lin. Alg. Appl., 283(3), 171(1998).
[3] E. Buhleier, W. Wehner, F. V"ogtle, Synthesis, 2(2), 155(1978).
[4] C. J. Hawker, J. M. J. Fr'echet, J. Am. Chem. Soc., 112(21), 7638(1990).
[5] W. Jiang, S. Zhang, Computing the Connectivity Indices of α - and β Cyclodextrins, presented at the IEEE International Conference on Bioinformatics and Biomedicine Workshops, December 18-th, 2010, Hong Kong, China
[6] L. B. Kier, W. J. Murray, M. Randic, L. H. Hall, J. Pharm. Sci., 65(8), 1226(1976).
[7] Hao Li and Mei Lu, MATCH Commun. Math. Comput. Chem., 54(2), 417(2005).
[8] D. A. Morales and O. Araujo, J. Math. Chem., 13(1), 95(1993).
[9] Z. Mihalic and N. Trinajstic, J. Chem. Educ., 69(9), 701(1992).
[10] M. Randic, J. Am. Chem. Soc., 97(23), 6609(1975).
[11] J. Rada and O. Araujo, Discr. Appl. Math., 119(3), 287(2002).
[12] M. Randic, P. J. Hansen, P. C. Jurs, J. Chem. Inf. Comput. Sci., 28(2), 60(1988).
[13] V. K. Singh, V. P. Tewari, D. K. Gupta and A. K. Srivastava, Tetrahedron, 40(15), 2859(1984).
[14] D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder and P. Smith, Polym. J., 17(1), 117(1985).

[^0]: * Corresponding author email: xmhou@ustc.edu.cn

