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In this work we have done phenomenology based model calculations for some of the 

thermodynamic properties of the strongly correlated superconductors of Cuprate type. The 

method involves the application of the theoretical result for electronic specific heat in the 

normal phase from Marginal Fermi Liquid theory to the Gorter-Casimir two fluid model to 

further derive electronic specific heat and the temperature dependence of the critical 

magnetic field corresponding to a type-I system, using the standard variational technique. 

Our results are in fairly good agreement with other theoretical results based on different 

approaches, as well as with the experimental results. 
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1. Introduction 
 

High temperature superconductivity in Cuprates has taken the centre stage of modern 

condensed matter physics since its discovery in 1987 because of the unusual normal state 

properties of these materials combined with the very rich phase diagram, besides the 

superconducting transition temperatures in the range of 40K-164K. These systems exhibit 

deviations from the Fermi liquid (FL) phenomenology in large regime of stoichiometric 

compositions
 [1,2]

. Moreover, the conventional microscopic theory is not always successful to 

explain the properties in the superconducting phase satisfactorily. On a phenomenological level, 

the behaviour below the optimal doping in the normal phase seems to display ‘marginal Fermi 

liquid' (MFL) behaviour in the normal phase
[3]

. 

One of the most important features observed in experiments in the normal phase of the 

cuprates is the linear temperature dependence of dc resistivity, which below the optimal doping 

persists in an enormous temperature range from a few kelvin to much above room temperature
[4]

. 

The studies of the electrodynamic properties in the superconducting phase provide a clear 

phenomenological scenario, reveal information regarding the pairing state, the energy gap and the 

electronic density of states
[5]

 and thus provide important indications on the mechanism of high 

temperature superconductivity. 

A phenomenological model describing the MFL behaviour of cuprates has been put 

forward by Varma and co-workers
[6,7]

 but its microscopic origin remains highly controversial. To 

our knowledge, no microscopic theory has so far been able to provide a satisfactory explanation 

for the phenomenon of high temperature superconductivity and anomalous normal phase 

properties of cuprates despite tremendous efforts during the last three decades
[8]

. 
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Fig. 1: Crystal structures of (a) La2-xBaxCuO4 and (b) Nd2-xCexCuO4 superconductors. 

 

 

Gorter and Casimir
[9,10]

 in their two fluid (TF) model assumed the following formal analytical form 

for the free energy density of electron Fs(x,T) 

 

𝐹𝑠(𝑥, 𝑇) = 𝑥
1
2𝑓𝑛(𝑇) + (1 + 𝑥)𝑓𝑠(𝑇)                                        (1) 

 

where fn(T) and fs(T) are the free energy density of the normal fluid and superfluid respectively 

and showed from the thermodynamic relation that the critical magnetic field 𝐻𝑐(𝑇) can be written 

in terms of the critical magnetic field at zero temperature Ho as 

 

 

𝐻𝑐(𝑇) = 𝐻𝑜 [1 − (
𝑇

𝑇𝑐
)
2

]     (2) 

 

Where 𝑇𝑐 is the critical temperature.  

 

Bardeen, Cooper and Schriefer (BCS)
[11]

 proposed a microscopic Hamiltonian for a 

superconductor, which is based on the idea of Cooper pairing. Using this theory, they were able to 

successfully describe the interaction between electrons forming Cooper pair. The BCS theory has a 

parameter ɡ defined as 

 

𝑔 = 𝑁(0)𝑉𝑒𝑓𝑓     (3) 

 

Where 𝑉𝑒𝑓𝑓 is the magnitude of the effective attractive interaction between the electrons forming a 

Cooper pair. From BCS equation in the weak coupling regime, one has the following equation for 

Tc, 

 

𝑇𝑐 = 1.13𝜃𝑐𝑒𝑥𝑝 (−
1

𝑔
)     (4) 

 

Where θc is the temperature equivalent of the characteristic energy of the bosonic excitation 

mediating the pairing interaction. In the weak coupling regime, 0 < g < 0:25. 

Hereafter we would assume equation (4) to be valid even when the pairing is mediated by high 

energy electronic boson.  

In general, the unusual normal state properties of the high temperature superconduct- 

ing copper oxide compounds indicate a scattering rate for the itinerant electrons, that is linear in 

frequency ω and linear in temperature T over a large region. This implies that these materials 

cannot satisfactorily be described by the conventional FL picture
[8]

. 

Varma et al
[1,6]

 postulated that in the copper oxide system, there are charge and spin 

density fluctuations of the electronic system, which are significantly distinct from those in the 

conventional FL. These two excitations however have similar behaviour. These fluctuations lead 
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to a new contribution to the polarisability of the electronic medium that would renormalize the 

electron through the self energy in accordance with the observed scattering rates
[8,12]

. 

Kuroda and Varma
[13]

 calculated the specific heat of the MFL in the normal phase using a 

Fermi liquid-like formula in the presence of electron-boson coupling constant. This boson is taken 

to be the itinerant particle-hole pair (exciton) itself in the normal state. They obtained the 

electronic specific heat Cv of the MFL as 

 

𝐶𝑣 = 𝑁(0) (3 + 2𝑙𝑛
𝜃𝑐

𝑇
) 𝑇    (5) 

 

Where θc is the characteristic temperature corresponding to the energy of the excitonic boson in 

the MFL theory and assuming coupling coefficient λ+ = 1. 

 

 

2.  Theory 
 

We can extend the free energy of conduction electrons in a metal
[14,15]

 and make use of the 

result of Kuroda and Varma
[13]

 to arrive at the expression for the free energy density of the 

electrons in the normal phase of the MFL. We further make use of the TF model
[9,10]

 and obtain the 

total electronic free energy density in the superconducting phase of the MFL from which we make 

use of the variational technique to obtain the electronic specific heat in the superconducting state 

𝐶𝑣
𝑆and the electronic specific heat in the normal state 𝐶𝑣

𝑁 as 

 

𝐶𝑣
𝑆 = 𝑁(0)

𝑇3

𝑇𝑐
2

1

(3+𝑙𝑛
𝜃𝑐
𝑇𝑐
)
[6 (3 + 𝑙𝑛

𝜃𝑐

𝑇
)
2

− 7(3 + 𝑙𝑛
𝜃𝑐

𝑇
) + 1]   (6) 

 

and 

 

𝐶𝑣
𝑁 = 𝑁(0) (3 + 2𝑙𝑛

𝜃𝑐

𝑇
) 𝑇      (7) 

 

At the transition temperature Tc, the ratio of 𝐶𝑣
𝑆 to 𝐶𝑣

𝑁, the difference between 𝐶𝑣
𝑆 and 𝐶𝑣

𝑁 called 

specific heat jump ∆𝐶𝑣 , the normalized specific heat jump R (
∆𝐶𝑣

𝐶𝑣
𝑁 )  and the normalized slope of the 

specific heat jump D were obtained and are shown in equations (8), (9), (10) and (11) respectively. 

The graphs are also shown in figures 3-5. 

 

𝐶𝑣
𝑆

𝐶𝑣
𝑁 |𝑇=𝑇𝑐 =

1

(3+2𝑙𝑛
𝜃𝑐
𝑇𝑐
)
[6 (3 + 𝑙𝑛

𝜃𝑐

𝑇𝑐
) − 7 +

1

(3+𝑙𝑛
𝜃𝑐
𝑇𝑐
)
]                            (8) 

 

 
 

Fig. 2: Graph of specific heat in the superconducting phase 𝐶𝑣
𝑆 against temperature T. 
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∆𝐶𝑣|𝑇=𝑇𝑐 = 𝑁(0)𝑇𝑐
1

(3+𝑙𝑛
𝜃𝑐
𝑇𝑐
)
[6 (3 + 𝑙𝑛

𝜃𝑐

𝑇𝑐
) − 7 +

1

(3+𝑙𝑛
𝜃𝑐
𝑇𝑐
)
] − 𝑁(0) (3 + 2𝑙𝑛

𝜃𝑐

𝑇𝑐
) 𝑇𝑐      (9) 

 

 

 
 

Fig. 3: Graph of normalized specific heat jump in the superconducting phase 
∆𝐶

𝐶𝑣
𝑁 against normalized 

temperature 
𝑇

𝑇𝑐
. 

 

 

𝑅 =
1

(3+2𝑙𝑛
𝜃𝑐
𝑇𝑐
)
[6 (3 + 𝑙𝑛

𝜃𝑐

𝑇𝑐
) − 7 +

1

(3+𝑙𝑛
𝜃𝑐
𝑇𝑐
)
] − 1   (10) 

 

 

 
 

Fig. 4: Graph of normalized slope of the specific heat jump in the superconducting phase ∆C against 

normalized temperature 
𝑇

𝑇𝑐
. 

. 

and 

 

𝐷 =
1

(3+2𝑙𝑛
𝜃𝑐
𝑇𝑐
)
[18 (3 + 𝑙𝑛

𝜃𝑐

𝑇𝑐
) − 33 +

10

(3+𝑙𝑛
𝜃𝑐
𝑇𝑐
)
] − 1   (11) 
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Fig. 5: Graph of ratio of the normalized slope of specific heat jump and normalized 

specific heat jump in the superconducting phase against normalized temperature 
𝑇

𝑇𝑐
. 

. 

 

We also extended our expression for the free energy density of electrons in the normal 

phase of MFL and our 𝐶𝑣
𝑁 to obtain the temperature dependence of the critical magnetic field 

Hc(T) for a superconductor arising from the MFL normal phase as 

 

𝐻𝑐(𝑇) = 𝐻𝑜 [1 − (
(3+𝑙𝑛

𝜃𝑐
𝑇
)

(3+𝑙𝑛
𝜃𝑐
𝑇𝑐
)
)(

𝑇

𝑇𝑐
)
2

]                                     (12) 

 

Where 𝐻𝑜 is the critical magnetic field at T = 0 K. 

 

 

Fig. 6: Graph of  
𝐻𝑐

𝐻𝑜
 against normalized temperature 

𝑇

𝑇𝑐
. 

 

 

Equation (12) is a departure from the conventional TF Model behaviour expected on the 

basis of the normal state modeled as a FL. 

 

 

3. Discussion of Results 
 

In our model, we have incorporated the normal phase properties described by MFL theory 

into the structure of Gorter-Casimir TF model. Specific heat measurements give information on 

the electron-boson coupling strength. The BCS theory
[11]

 and its subsequent refinements based on 

the Eliashberg equations
[16,17]

 show that high critical temperatures in superconductors are favoured 
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by high values of the frequencies of the bosons mediating the pairing interaction and by the large 

electronic density of states at the Fermi level. 

The quantity of interest is the difference between the electronic specific heats in the 

normal and superconducting phases. Our calculation shows that the normalized specific heat jump 

differs appreciably from 1.43, the value corresponding to the BCS weak coupling limit for a 

superconducting transition from the conventional FL phase
[18]

 and from Khanna et al
[19]

, values of 

1.01 and 1.33 within the exotic pairing model for buckling mode and breathing mode respectively. 

At low temperatures, the lattice contribution to the total specific heat is small and can be 

accurately subtracted to extract the purely electronic contribution. The normal phase specific heat 

can be obtained by applying a magnetic field of sufficient strength to cause the sample to become 

normal. From our result, the ratio of the normalized slope of specific heat jump and normalized 

specific heat jump in the superconducting phase 
𝐷

𝑅
 at critical temperature Tc is 4.1197, 4.2616, and 

4.4110 for 𝑔 = 0.1, 0.2 and 0.3 respectively. 

In the oxide superconductors, there are difficulties associated with these measure-ments. 

Because the superconducting critical temperatures of these oxide materials are relatively high, the 

lattice contribution to the total specific heat is quite large compared to the electronic contribution. 

An additional complication is that it is only possible to get normal state data close to critical 

temperature as the critical fields are quite large and are difficult to produce in the laboratory. 

 

 
 

Fig. 7: Experimental result for the specific heat of Y Ba2Cu3O7 . 

 

 

Fig. 7 represents the experimental results for specific heat corresponding to YBCO. 

Comparing with figure 2, observe that at low temperatures, there is an upturn in the specific heat 

rather than the expected exponential decay. However, there is still a linear term but there is no 

consensus yet on its origin. Analysis of the experimental data is usually done by assuming that the 

BCS relation 
∆𝐶

𝛾𝑇𝑐
=1.43 holds. However it is pointed out by Beckman et al

[20]
 that  γ extracted by 

this analysis is not in good agreement with values from high Tc magnetization experiments and 

band structure calculations. 

Loram et al
[21]

 have used differential calorimetry on YBCO samples and report a 

normalized specific heat jump of 2.5. Wang et al
[22]

 measured low temperature specific heat for 

single crystal cuprate (Y Ba2Cu3O7-δ) using thermal relaxation technique and obtained a value of 

about 4.0 for normalized specific heat jump. Philips et al
[23]

 and Salas et al
[5]

 have reported values 

of about 4.8 and 3.8 respectively. 

From various observations, it would seem that there is a strong evidence for the specific 

heat jump to be large in the high Tc materials. This large value of the normalized specific heat 

jump is consistent with the result of ~3.02 in the model of synthesizing the Gorter-Casimir TF 

model with MFL theory as done in the BCS weak coupling regime in this work. 
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4. Conclusion 
 

In this research, we have applied the results from the MFL theory to the Gorter-Casimir 

TF model and used these to calculate some thermodynamic properties like the specific heat jump 

and the temperature dependence of the critical magnetic field. The results of our calculations are 

closer to the experimental results obtained for Cuprates, than those from the phenomenological 

theory within the framework of ordinary FL assumptions, independently. 

In this study, we have only modified the normal fluid part of the Gorter-Casimir TF 

model. A more accurate result can be obtained by modifying the super fluid part as well. One 

method of doing this is to use a scheme based on many body formalism which leads to the free 

energy of the full superconducting phase for a MFL superconductor. From this, one can in 

principle subtract the normal fluid free energy density and thereby extract the super fluid 

contribution corresponding to MFL. 

Our methodology will be extended to a type-II superconducting system in future. 
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