KINETIC AND THERMODYNAMIC STUDIES FOR THE H₂S ADSOPRTION USING TiO₂ NANOMATERIALS

N. SHAHZAD^{a*}, N. AHMED^b

^{a*}National University of Sciences and Technology, Islamabad, Pakistan ^bNational Center for Physics, Islamabad, Pakistan

This study is continuation of the studies carried out by our research group focusing on the catalytic and photocatalytic destruction of H_2S gas using pure and doped TiO₂ nanomaterials. To further study the H_2S adsoprtion mechanism, kinectic and thermodynamic studies were carried out, folowed by adsorption isotherms like Langmuir and Freundlich isotherms. The reactions were assumed to be pseudo first order reactions. In agreement with our previous findings, lower activation energies were attained for 2% sulphur doped nanoparticles and nanofibers, the energy that of nanofibers being quite lower than the nanoparticles indicating the better destruction efficiency in case of nanofibers.

(Received December 24, 2014; Accepted March 26, 2015)

Keywords: TiO₂, H₂S, adsorption mechanism

1. Introduction

 H_2S gas is highly toxic in nature and has a very low odour threshold [1]. H_2S is considered to be a broad spectrum toxicant because most of the human organs and tissues with mucous membrane exposed (eyes, nose) and organs having high oxygen demand (brain, lungs) are the main target of H_2S gas [2]. This gas is also classed as a chemical asphyxiant, which is quite similar to cyanide gases and carbon monoxide. Many studies have been carried out for the destruction of this gas [3-5]. TiO₂ nanoparticles and nanofibers have also been used by us in our studies for evaluating their destruction potential using both catalytic and photocatalytic reactions [6-8]. TiO₂ nanoparticles were synthesized by using co-precipitation method at room temperature and atmospheric pressure [9]. The TiO₂ nanofibers were synthesized using electrospinning technique which is considered to be the most useful technique for synthesis of nanofibers in nanodomains [10, 11].

Besides other analyses carried out in our subsequent studies as described before , kinetics and themodynamic studies were also carried out for catalytic reactions in order to understand the adsoprion mechanism of H_2S gas using pure and Sulphur doped TiO₂nanoparticles and nanofibers.In order to further study the adsoprtion mechanism of H_2S gas, the reaction data was also analysed using the Langmuir and Freundlich adsoprtion isotherms. The reactions were assumed to be the pseudo first order reactions. Since the nanofibers had comparatively significant H_2S destruction efficiency as compared to nanoparticles [12], both the Langmuir and Freundlich isotherms were tested to fit the experimental data of H_2S adsorption on the surface of the TiO₂ nanofibers.

2.Methodology

2.1 Kinetic and Thermodynamic Studies

Keeping in view the comparatively significant H_2S destruction efficiency of nanofibers, kinetic and thermodynamic studies were carried out using pure and doped TiO₂ nanofibers to

^{*} Corresponding author: naeem5251@hotmail.com

understand the H₂S adsorption and destruction mechanism. The reactions were assumed to be pseudo first order reactions and simplified kinetics equation after integrating the pseudo first order rate equation is as under:

$$t^{*}k_{ads} = ln(C_{o}/C)$$
(1)
Where,

$$k = rate constant,$$

$$C_{o} = Initial concentration,$$

$$C = Concentration at time't'$$

The kinetic and thermodynamic parameters were calculated using the famous Arrhenius Equation as under:

$k = A^*$	e ^{(-Ea/RT})	(2)
Where	·,		
k	=	rate constant	
А	=	frequency factor	
E_a	=	activation energy	
R	=	gas constant (8.314 J mol ⁻¹ K^{-1})	
Т	=	temperature in K°	

This equation can be further simplified by taking the log natural, as:

$$\ln(k) = \ln(A) - E_a / RT$$
(3)

(4)

153

The other thermodynamic parameters were calculated using the following thermodynamic equations:

ΔG	=	-RT ln (k)
Where	,	
ΔG	=	Gibbs free energy change
R	=	Gas constant (8.314 J mol ⁻¹ K^{-1})
Т	=	Temperature in K ^o
		_

2.2 Adsorption Isotherms

Both the Langmuir and Freundlich isotherms were tested to fit the experimental data of H₂S adsorption on the surface of the TiO₂ nanofibers. Langmuir model describes the adsorption onto a surface where the monolayer coverage represents the maximum sorbate concentration (C_{max}) . The equation can be written as:

$$C_{s} = \underbrace{K_{L}C_{max}C_{eq}}_{1+K_{L}C_{eq}}$$
(5)

Inverting eq.5,

$$\frac{1}{C_{s}} = \frac{1+K_{\underline{L}}C_{eq}}{K_{\underline{L}}C_{max}C_{eq}}$$

$$\frac{1}{C_{s}} = \frac{1}{K_{\underline{L}}C_{max}C_{eq}} + \frac{K_{\underline{L}}C_{eq}}{K_{\underline{L}}C_{max}C_{eq}}$$

$$\frac{1}{C_{s}} = \frac{1}{K_{\underline{L}}C_{max}C_{eq}} + \frac{1}{C_{max}}$$
(6)

Where,

Sorbate (H₂S) concentration = = H₂S concentration at equilibrium

 \mathbf{C}_{s} \mathbf{C}_{eq} C_{max} Maximum H₂S concentration adsorbed =

130

 K_L = Langmuir sorption constant

Freundlich model can be expressed mathematically as:

$$C_{ads} = K_f C e^{1/n}$$
⁽⁷⁾

Rearranging eq. 7,

$ln \ C_{ads}$	$= 1 \ln n$	$C_{\rm e} + \ln K_{\rm f} \tag{8}$
	n	
Where	e,	
C_{ads}	=	Amount of H_2S adsorbed
C _e	=	H ₂ S concentration at equilibrium
K _f	=	Freundlich adsorption constant
n	=	Empirical constant that varies with degree of heterogeneity

2.3 Sample IDs

The samples were named as per the sulphur doping concentrations and 0, 1, 1.5, 2, 2.5 and 3% sulphur doped nanoparticles were coded as 0P, 1P, 1.5P, 2P, 2.5P and 3P, respectively. The 0, 1, 2, 3, 4 and 5% nanofibers were coded as 0F, 1F, 2F, 3F, 4F and 5F, respectively.

3.Kinetics and Thermodynamics Studies

3.1Results

The reaction constant ' k_{ads} ' was calculated by plotting a graph between ln (C_o/C) and time 't'. Different values of k_{ads} have been listed in Tables 1 and 2 for nanofibers and nanoparticles, respectively. It was observed in our previous studies that highest efficiencies were achieved using 2% S-doped nanofibers [12]. Therefore, only the graph obtained for 2% S-doped nanofibers (2F) showing a relationship between time and H₂S concentration at different temperatures of 450, 350, 250, 150 and 50 C° are shown in Fig.1.

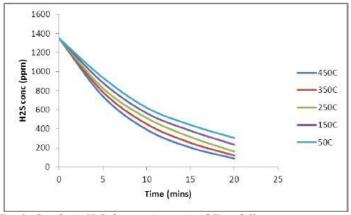


Fig.1. Catalytic H₂S destruction using 2F at different temperatures

The values of A and E_a for 2% S-doped nanofibers were calculated by plotting a graph between ln(k) and $1/T(K^{\circ})$, which is as shown in Fig. 2.

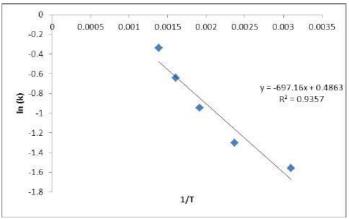


Fig.2. Graph plotted between ln(k) and 1/T for 2F nanofibers

Different thermodynamic parameters calculated using the above mentioned graph and equations for the nanofibers have been shown in Table 1.

Sample ID	k _{ads} (s ⁻¹)	E _a (kJ/mole)	G (kJ)	А
0F	0.4839	6.721	-4363.26	1.274686
lF	0.6534	6.103	-2558.09	1.578697
2F	0.7124	5.796	-2038.43	1.626287
3F	0.6619	6.059	-2480.39	1.588039
4F	0.5754	6.42	-3322.23	1.452084
5F	0.6684	5.96	-2421.65	1.55566

Table 1. Values of thermodynamic parameters E_a and G calculated for TiO₂ nanofibers

Using the average values of the frequency factor 'A' found for the nanofibers, the thermodynamic parameters for the nanoparticles were calculated as both the experiments were performed under same experimental conditions. The thermodynamic parameters have been tabulated in Table 2.

3.2Discussions

3.2.1 Nanoparticles

The values of thermodynamic parameters, k_{ads} , E_a and G calculated for all catalytic reactions using nanoparticles are presented in the Table 2. It can be seen from that as observed in all the cases, the k_{ads} for the 2P nanoparticles (2P) is the highest and consequently its E_a is lowest showing that it requires the lowest activation barrier for the destruction of H₂S gas as compared with the other nanoparticles. The calculated value of Gibbs free energy change ' Δ G' as a result is also found to be lowest for the 2P nanoparticles. Negative values of the Gibbs energy change show the spontaneity of all the reactions.

Sample ID	k _{ads} (s ⁻¹)	E _a (kJ/mole)	G (kJ)	
0P	0.1624	12.38507	-10926.2	
1P	0.1569	13.87793	-11133.3	
1.5P	0.2254	11.79025	-8955.69	
2P	0.2744	10.69642	-7773.26	
2.5P	0.2592	10.96787	-8115.81	
3P	0.159	13.83347	-11053.4	

Table 2.Values of thermodynamic parameters E_a and G calculated for TiO₂ nanoparticles

3.2.2 Nanofibers

Similar to the findings of the nanoparticles, the value of k_{ads} was found to be highest for 2% S-doped nanofibers and the activation energy was the lowest. This shows that these nanofibers have the highest adsorption capacity as compared with the other nanofibers. Itwas also noted that the E_a for 2% S-doped nanofibers was higher than the E_a for the 2% S-doped nanoparticles once again showing that the efficiency of the nanofibers is higher than the nanoparticles. Moreover these findings can also be correlated to the pore volume and pore diameter of the nanofibers was greater than those of other TiO₂ nanoparticles and nanofibers. Therefore the large pore volume and pore diameter facilitate the mass transfer of reactants [13] resulting into highest destruction efficiency.

It is worth mentioning that the H_2S activation energies of 10.69 and 5.79 kJ/mole for 2% S-doped nanofibers and nanoparticles, respectively were quite lower to the activation energies reported in quite a number of studies [14]. Brink and co authors reported that activation energy of H_2S varied from 10-60 kJ/moles in different studies. A summary of the studies which have explored the activation energies of H_2S on different catalysts is presented in Table 3.

H ₂ S Activation Energies (kJ/mole)	Catalyst	Reference	
72.4	Low pressure flame analysis	[15]	
16.3	Carbon	[16]	
76.1	Lime Particles	[17]	
31-53	Vanadium Sulphide	[18]	
163.24	Uncalcined Limestone	[19]	
30.1 <u>+</u> 4.9	Fe (VI)	[20]	
16.8	Activated Carbon	[21]	
26.6-29.3	Activated Carbon	[22]	
30-36	Direct oxidation in fluidized bed reactor	[23]	

Table 3: Studies conducted for calculation of E_a for the H_2S adsorption on different catalysts

It can therefore be inferred from the low activation energies calculated from the experiments in this study that the 2% S-doped TiO₂ nanoparticles and nanofibers are highly

favourable catalysts for the H_2S destruction. The negative values of the free energy change explain the spontaneity of these reactions.

4.H₂S Adsorption Isotherms

4.1 Results

Both the Langmuir and Freundlich isotherms were tested to fit the experimental data of H_2S adsorption on the surface of the TiO₂ nanofibers.

4.1.1Langmuir Isotherm

From the equation 6, C_{max} and K_L were calculated by plotting the graphs between $1/C_s$ and $1/C_{eq}$ for all the nanofibers. From the C_{max} , maximum number of molecules adsorbed on TiO₂ surface (η_{max}) was also calculated [24]. The values of C_{max} and K_L and η_{ads} have been tabulated in Table 4.

Sample ID	C_{max}	KL	R ²	η _{max}
0F	313	0.0249	0.99	0.00816
lF	357	0.0172	0.76	0.0104
2F	588	0.0075	0.76	0.0173
3F	250	0.0116	0.41	0.0073
4F	345	0.0046	0.58	0.0101
5F	238	0.0127	0.81	0.0069

Table 4: Values of C_{max} , K_L and η_{ads} for TiO₂ nanofibers

4.1.2Freundlich Isotherm

A plot between 'ln C_{ads} ' and 'ln C_e ' gave the parameters 'K_f' and 'n' for Freundlich isotherm which have been summarized in Table 5.

4.2Discussions

As the noxious gases like H_2S , follow the Langmuir adsorption behavior [25], Langmuir and Freundlich adsorption isotherms were tested to fit the experimental data for the moles adsorbed on the surface of the TiO₂ nanofibers. K_L and K_f are the functions of the capacity of adsorbent to adsorb a specific adsorbate. Constant '1/n' is also termed as the intensity of adsorption. The values of 'n' were all found to be below or equal to 10, which shows favourable adsorption ability [26]. The number of molecules adsorbed (η_{ads}) on the surface of the TiO₂ nanofibers were calculated by using the Langmuir isotherm. The number of molecules adsorbed were found to be highest for the 2F nanofibers which showed the highest photocatalytic efficiency for the H₂S gas destruction. The R² value for this data was 76% which shows a relatively good fit.

134

Sample ID	K _f	n	R^2
0F	105.8	6.1	0.99
1F	26.0	2.3	0.94
2F	198.0	6.7	0.82
3F	63.7	5.1	0.68
4F	61.1	4.7	0.53
5F	123.6	10.8	0.84

Table 5: Values of ' K_f ' and 'n' calculated for TiO₂ nanofibers

5.Conclusions

As found in our previous studies [12],the highest H_2S destruction efficiency was achieved in the case of 2% Sulphur doped nanofibers samples, and 2% sulphur doped particles. But the destruction efficiency found in the case of nanofibers was quite higher as compared to that of nanoparticles which is in good agreement with the previous studies [26, 27]. This was also reflected in the kinetic and thermodynamic studies where the k_{ads} values were higher and E_a was lower in the case of 2F nanofibers. The same trend was also observed in the adsorption isotherms where the number of moles adsorbed was found to be highest for these samples. It can therefore be concluded that the best H_2S destruction efficiency could be achieved by using 2% S-doped nanofibers in photocatalytic experiments.

References

[1]B. Mills. J. Filtration and Separation 32, 147 (1995).

[2] M. Legator, C. Singleton, D. Morris, D. Philips. Archives of Environmental Health **56**(2) 123(2001).

[3]M.C. Canela, M.A. Rosana, W.F. Jardim. Journal of Photochemistry and Photobiology A: Chemistry **12**, 73 (1998).

[4] W.F. Jardim, C.P. Huang, presented at the Sixth International Symposium, Chemical

Oxidation, Technology for the Nineties, Vanderbilt University, Nashville, USA (1996).

[5] I. Iliuta, F. Larachi. Chemical Engineering Science 58, 5305 (2003).

[6]N. Shahzad, S. T. Hussain, M. A.Baig. International Journal of Climate Changes: Impact and Responses**3**(2), 95 (2012).

[7]N. Shahzad, S. T. Hussain, A. Siddiqua, M. A. Baig. Journal of Nanoscience and Nanotechnology **12** (6), 5061 (2012).

[8] N. Shahzad, C. Qiao. Material Science Forum 756, 225 (2013).

[9] S. T. Hussain, K. Khaiber, R. Hussain. Journal of Natural Gas Chemistry 18, 383 (2009).

[10] C. J. Buchko, L. C. Chen, Y. Shen, D. C. Martin. (1999). Polymer40, 7397 (1999).

[11] Z. M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna.Comp. Sci.Tech.63, 2223 (2003).

[12] N. Shahzad. Ph.D. Thesis, National University of Sciences and Technology, Pakistan (2012).

[13] E. Ghedini, M. Signoretto, F. Pinna, F. Cruciani. Catal Lett. 125, 359 (2008).

[14] P. J. van der Brink, R. J. A.M. Terorde, J. H. Moors, van Dillien, J. W. Geus. Studies in surface science and catalysis **72**, 123 (1992).

[15] E. L. Merryman, A. Levy, A. Journal of the Air Pollution Control Association **17** (12), 800 (1967).

[16]O. C. Cariaso, P. L. Walker Jr. Carbon 13(3), 233(1975).

136

- [17] S. Won, H. Y. Sohn. Metallurgical and Materials Transaction B. 16(1), 163 (1985).
- [18] L. M. Al-Shamma, S. A. Naman. International Journal of Hydrogen Energy **14** (3), 173 (1989).
- [19] L. A. Fenouil, S. Lynn.Ind. Eng. Chem. Res. 34, 2324 (1995).
- [20] V. K. Sharma, J. O. Smith, F. J. Millero. Environ. Sci. Technol. 31, 2486 (1997).
- [21] A. Primavera, A. Trovarelli, P. Andreussi, G. Dolcetti. Applied Catalysis A: General, **173**,185 (1998).
- [22] R. Azargohar. PhD Thesis, University of Saskatchewan, Canada. (2009).
- [23] F. Golestani, M. Kazemeini, M. Fattahi, A. Amjadian. World Academy of Science,
- Engineering and Technology 79, 237 (2011).
- [24] I. Sopyan.Science and Technology of Advanced Materials 8, 33 (2007).
- [25] A. Fujishima, T. N. Rao, D. A. Tryk. J. Photochem. Photobiol. C. 1, 4 (2000).
- [26] N. Deedar.MS thesis, National University of Sciences and Technology, Pakistan (2007).
- [27] T. Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaran, S. S. Ramkumar. Journal of Applied Polymer Science **96** (2), 557 (2005).
- [28] S. Ramakrishna, K. Fujihara, W. E. Wee-Eong Teo, T. Yong, Z. Ma, R. Ramaseshan. Materials Today **9**(3), 40 (2006).