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An ordinary differential equations (ODE) system describing the oscillation dynamics of a 
neuronal network is numerically integrated aiming to evidence chaos by the change in sign 
from negative to positive of the maximum Lyapunov exponents, and by a sudden decrease 
in the error doubling time. The error doubling time is calculated for different frequencies 
of the spiking rate oscillations. Than, the maximum Lyapunov exponents are calculated for 
the same frequencies. Both approaches agree each other.  
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1. Introduction 
 
The heredity of the last century for actual physics consists in three major challenging 

problems: relativity, quantum mechanics, and chaos. The presence of chaos was reported in many 
areas of science, such as physics, chemistry, biology, economical sciences, etc. Therefore, the 
question of detecting and quantifying chaos has become an very important one. The existence of 
chaotic dynamics has been known for a long time among mathematicians, starting with Poincare’s 
work [1] at the turn of the XIXth century and continuing with the subsequent pioneering studies of 
Kolmogorov [2]. At first, knowledge of this work remained largely confined to the mathematical 
community. Starting in the mid – 1970s, and stimulated by the availability of digital computers, 
this situation rapidly changed, as the broad impact and occurrence of chaos in science and 
engineering began to be widely recognized.  

Nonlinear dynamics has some claim to be the most ancient scientific problem. Among its 
few rivals in longevity is geometry; it therefore seems surprising that geometric methods in 
nonlinear dynamics were not applied until the last century. The founder of geometric dynamics is 
universally acknowledged to be Henri Poincare, who alone among his contemporaries saw the 
usefulness of studying topological structure in the phase space of dynamical trajectories. But, apart 
from a few instances such as the stability analysis of Lyapunov [3], Poincare’s ideas seemed to 
have little impact on applied dynamics for almost half a century. 

Dissipative systems have the property that an evolving ensemble of states occupies a 
region of phase space whose volume decreases with time. Over the long term, this volume 
contraction has a strong tendency to simplify the topological structure of trajectories in phase 
space. This can often mean that a complex dynamical system with even an infinite – dimensional 
phase space (governed for example by partial differential equations) can settle to final behavior in 
a subspace of only a few dimensions. Recent experimental observations of such low – dimensional 
behavior suggest that a better understanding of an  a priori  low – dimensional mathematical 
models of dynamics would be a helpful guide to behavior in more complex dissipative systems.  
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Einstein told us that the human body is the more complex system of the Universe. 
Therefore, the huge amount of studies on this ‘system’ is more than welcome. Various methods are 
used in this scope, covering a large number of interdisciplinary fields [4-7].   

 Here we present a general approach inspired from E. Rossoni et al [8] about how 
to mathematically tackle a complex neuronal network so that we can fully understand the 
underlying mechanism. Using a neural network, we reduce a complex model with many variables 
to a tractable model with only two variables, while retaining all key qualitative features of the 
model. This two ODE system is processed using the Grassberger-Procaccia algorithm [9,10] in 
order to obtain the correlation dimension and the Kolmogorov entropy. The error doubling time is  
calculated (via the Kolomogorov entropy) for different oscillation frequencies of the spiking rate. 
Results evidence important variations of the predictability (error doubling time) when the 
modulation frequency is modified. The values of attractor dimension, approximated by the 
correlation dimension are sometimes greater than two, due to the time dependence appearing in the 
right hand side of the ODE system. 

Section 2 presents biological considerations together with the mathematical equations of 
the model, and Section 3 describes the Grassberger – Procaccia algorithm for predictability 
estimates. In Section 4 some introductory remarks in chaos are emphasized; the Lyapunov time 
and the time horizon of a chaotic system are defined. Section 5 contains results and discussions, 
and Section 6 ends this Paper. 

 
2. Biological Considerations 
 
A neuron  is an electrically excitable cell that processes and transmits information by 

electrical and chemical signaling. Chemical signaling occurs via synapses, specialized connections 
with other cells.    

A neuronal network illustrates a hierarchical rhythmic oscillation dynamics: each neuron 
emits action potentials periodically that can be regarded as oscillating dynamics at neuron level; 
the network population synchronizes and exhibits bursting dynamics periodically that can be 
regarded as oscillating dynamics at network level. In general, a network system can have diverse 
oscillation dynamics at different levels, owing to the interactions between individual units.  

Currently routinely complex neuronal network are developed to explain observed but often 
paradoxical phenomena based upon biological recordings. In general, a network system can have 
diverse oscillation dynamics at different levels, owing to the interactions between individual units. 
Each node oscillates and exhibits a faster rhythmic dynamics. The network synchronization also 
oscillates and shows a slower rhythmic dynamics.  Here we present a general approach inspired 
from E. Rossoni et al about how to mathematically tackle such a complex neuronal network so that 
we can fully understand the underlying mechanism. Their approach is general in the sense that it 
can be easily applied to dealing with other similar neuronal networks. Using an oxytocin network, 
they show how we can reduce a complex model with many variables to a tractable model with two 
variables, while retaining all key qualitative features of the model. The neuronal network 
illustrates a hierarchical rhythmic oscillation dynamics too: each neuron emits action potentials 
periodically. The readily-releasable store of oxytocin in dendrite is s(t).  

Now setting E(t) (the increase in excitability due to the oxitocin), and α(t) (the spiking 
rate) as to denote the corresponding dynamical variables averaged over the entire population, we 
suppose that the number of neural network’s nodes is n. So the two ODE system reads: 
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where τ0 is a time constant, kp is the rate of priming due to the suckling input and ks is the 
maximum fraction of the stores that can be released by a spike. Now we assume α(t) is periodically 
modulated, )sin()( 0 tt   , α0 being a constant and ω the modulation frequency, so that 

chaotic behavior could be expected. 
 
3. Predictability estimates 
 
The predictability of a system reveals the degree of confidence we may have in the 

knowledge of its temporal evolution. When modeling a chaotic system, it is very important to 
know the time after which the outputs of the model still have any meaning. One of the 
mathematical measure of predictability is the error doubling time, which gives us information 
about the amplification of errors in the initial state of the system. A very striking aspect in 
nonlinear dynamics is that phenomena which are predictable by their intrinsic nature present 
regions of unpredictability, i. e. for some values of a parameter (or more) the system exhibits 
chaotic behavior. On the other hand, phenomena which are mainly chaotic, may have a large 
predictability for some intervals of these parameters [11]. When applying the Grassberger – 
Procaccia  algorithm, the autocorrelation function r was computed for choosing the lag time . 
Following the algorithm, a k-dimensional phase space is than constructed by forming the vectors 
[12]: 
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where  = mt is the time delay (Δt being the time step), with the integer m chosen appropriately. 
In this space the correlation function is given by 
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where N is the total number of data points, H is the Heaviside function, and the usual Euclidean 
norm is used. Equation (3) is essentially equivalent to calculate the density of points on an attractor 

within a range of distances l from a given point jx , and then finding the average of this density 

over all points. When l is much smaller then the horizontal extent of the data, but larger than scales 
where numerical errors or noise are important, it can be shown that C(l) depends upon l as [13]:  
 

       elC ~                         (4) 
 

Where l is a pre-established settled distance in the phase space (depending on the 
extension of the data), and υ is an exponent which will define the correlation dimension (see 
bellow). For each embedding dimension k, this exponent υ can be obtained from the slope of the 
linear part of a plot of  lCln  versus ln(l). If υ approaches a value independent of k as k  
(usually k > 2υ+1 is sufficient), this value is defined as the correlation dimension υs  . 

The cumulative distribution Ck(l), obtained from eq. (2), where the subscript k refers to the 
embedding dimension, may be interpreted as the probability of finding two pieces of the trajectory 
whose distance remains loss than l during the evolution time (k-1). When the embedding 
dimension is increased from k to k+1 at fixed l, the change from Ck(l) to Ck+1(l) gives the number 
of points of such trajectories escaping from a ball of radius l. With this interpretation, it can be 
argued that: 
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where K is the Kolmogorov entropy.  When saturation is reached for sufficiently large k, eq. (2) 
with fixed l can be used to obtain the Kolmogorov entropy K: 
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where the value of l should be within the linear part of the plot of lnCn(l) versus ln(l). The error 
doubling time T is computed from: 
 

      
K

T
2ln

                    (7) 

 
4. Lyapunov time; introductory remarks 
 
The spectrum of Lyapunov exponents has proven to be the most useful dynamical 

diagnostic for chaotic systems. Lyapunov exponents are the average exponential rates of 
divergence or convergence of nearby orbits in phase space. Since nearby orbits correspond to 
nearby initial states, exponential orbital divergence means that systems whose initial difference we 
may not be able to resolve will soon behave quite differently - predictive ability is rapidly lost. 
Any system containing al least one positive Lyapunov exponent is defined to be chaotic, with the 
magnitude of the exponent reflecting the time scale on which system dynamics become 
unpredictable. Thus the Lyapunov exponents are related to the expanding or contracting nature of 
different conditions in phase space.  

The Lyapunov time allows the definition of a time scale, a scale at which two systems 
corresponding to the ‘same’ initial conditions have meaning. After an evolution time much greater 
then the Lyapunov time, the knowledge we had about the initial state loosed relevance 
(predictability), and does not allows us to determine the system’s trajectory in the phase space. In 
this sense, chaotic systems are characterized by a temporal horizon, defined by the Lyapunov time. 
If we want to enlarge the time on which the trajectories remain predictable by increasing the 
measurements precision, we see that, for a, let’s say ten time increase of the temporal horizon, the 
precision must be increased by a factor of e10, which is a prohibitively task. Thus, the temporal 
horizon makes the distinction between what we can ‘see’ in the evolution of a system, and the 
erratic behavior which follows beyond. 

 
 
5. Results and discussions 
 
Ten runs were made, corresponding to the modulation frequency  belonging to the 

interval [0.01 – 0.1], with an increment of 0.01. The numerical code was written in Fortran90 
under Linux (free downloadable). The graphs were pictured using the Gnuplot utilitarian attached 
to the same Linux version. 

The increase in excitability due to oxytocin was found to be very suggestive in evidencing 
well-behaved or erratic patterns. Each run contained a number of 11,000 data, of which the first 
1,000 transiental were removed, and the algorithms were applied to the next 10,000. The iterated 
Crank – Nicholson numerical integration scheme with two iterations [14] was used, thus ensuring 
the stability of the solution. 

In the figures 1 and 2 bellow, we present the correlation integrals  for ω = 0.01, 0.04, and 
0.07. 
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a                                               b 

 
Fig. 1: a – Correlation integral vs embedding dimension for ω = 0.01; b - correlation 

integral vs embedding dimension for ω = 0.04 
 
 

 
 

Fig. 2. Correlation integral vs embedding dimension for ω = 0.07. 
 
 

The correlation dimensions, which approximate the attractor’s dimensions, namely the 
saturation values of the correlation integrals, are 1.78, 2.81, and 2.63 respectively. Mention that the 
attractor dimension gives the ‘true’ value of the degrees of freedom for a nonlinear system, so we 
can infer the dynamics could be described by 2 or 3 equations, not necessarily known. But, 
unfortunately, we cannot infer anything about the chaotic behavior from these data, even of the 
noninteger values obtained, due to some numerical problems arising when applying the 
Grassberger – Procaccia algorithm [14].  

In figures 3 and 4 bellow we plot the error doubling times (a.u.) and the maximum 
Lyapunov exponents, both vs.  modulation frequency ω (a.u.), and both computed from time series 
obtained from the mathematical model numerical integrations, using the Grassberger – Procaccia 
algorithm, and the Wolf et al method respectively [16], as mentioned above in the Paper. We 
observe the onset of chaos at the same threshold value of 0.8 of the modulation frequency ω, 
evidenced in fig. 3 by a sudden decrease of the error doubling time of about one order of 
magnitude, from ~ 3.5 to ~ 0.4, as well as by a change of sign of the maximum Lyapunov 
exponent from about -3 to about 0.5 (fig. 4). 
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Fig. 3     Fig. 4 

Figs. 3,4;  3: Error doubling times (a.u.) vs. modulation frequency  ω (a.u.); 4:Maximum Lyapunov 
exponents vs. modulation frequency  ω (a.u.) 

 
 
 

The error doubling times together with the attractor’s dimensions and the maximum 
Lyapunov exponents for all the ten values of ω are presented in the Table  bellow. 
 

Table: The attractor’s dimensions, the error doubling times, and the maximum Lyapunov exponents  for 
different values of ω 

 
ω 

(arbitrary 
units) 

Attractor’s 
dimension 

Error doubling 
time(arbitrary 
units) 

Maximum 
Lyapunov 
exponents 

0.01 1.7 3.5 -3.4 
0.02 1.9 3.4 -2.8 
0.03 2.3 3.1 -2.9 
0.04 2.8 2.9 -3.1 
0.05 2.7 2.9 -3.0 
0.06 2.6 3.0 -2.9 
0.07 2.6 3.8 -3.0 
0.08 2.8 0.3 0.4 
0.09 2.7 0.2 0.4 
0.1 2.8 0.2 0.5 

 
 

6. Conclusions 
 
In the current Paper, we presented a general approach to tackle a complex neuronal 

network dynamics with a two dimensional model, with a relatively simple assumption on the time 
dependence of the spiking rate. So we want to point that the results were obtained using several 
important simplifications. But, as mentioned in the Introduction, a complex dynamical system can 
often settle to final behavior in a subspace of only a few dimensions. First, predictability estimates 
measured by the error doubling time were performed for neuronal activity, using data obtained 
from numerical integration of two ODE system. The same scope was achieved by computing the 
maximum Lyapunov exponents from numerical data in order to evidence the onset of chaos. Both 
approaches are in very good agreement each other. Further studies will start from the original ODE 
system when computing the Lyapunov exponents, and the results will be published elsewhere.  
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