# ASSESSMENT OF NATURAL RADIATION LEVELS AND ASSOCIATED DOSE RATES FROM SURFACE SOILS IN PONTIAN DISTRICT, JOHOR, MALAYSIA

# MUNEER AZIZ SALEH <sup>a,b\*</sup>, AHMAD TERMIZI RAMLI<sup>a</sup>, YASSER ALAJERAMI<sup>a</sup>, ABUBAKAR SADIQ ALIYU<sup>a</sup>

<sup>a</sup>Physics Department, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johore Bahru, Malaysia <sup>b</sup>National Atomic Energy Commission (NATEC), Sana'a, You en

<sup>b</sup>National Atomic Energy Commission (NATEC), Sana'a, Yemen

The radiation survey of the ambient environment was conducted using two gamma detectors and the measurement results were used in the computation of the mean external radiation dose rate, mean weighted dose rate, annual effective dose and the collective effective dose, which are 69 nGy h<sup>-1</sup>, 0.447 mSv y<sup>-1</sup>, 237  $\mu$ Sv and 0.126 × 10<sup>2</sup> man Sv y<sup>-1</sup>, respectively. A hyper purity germanium (HPGe) detector was used to determine the activity concentrations of <sup>232</sup>Th, <sup>226</sup>Ra and <sup>40</sup>K in soil samples. The results of the gamma spectrometry of the soil samples show a range from 2 ± 1 to 113 ± 9 Bq kg<sup>-1</sup> for <sup>232</sup>Th, 3 ± 1 to 68 ± 6 Bq kg<sup>-1</sup> for <sup>226</sup>Ra, and 26 ± 3 to 683 ± 29 Bq kg<sup>-1</sup> for <sup>40</sup>K. Radium equivalent activity (Ra<sub>eq</sub>) and external hazard index (H<sub>ex)</sub> were 136 Bq kg<sup>-1</sup> and 0.366 respectively; which were with recommended level for the population. The Mean lifetime dose and life time cancer risk for each person living in the area are 5.91 mSv,  $3.44 \times 10^{-4}$  Sv year, respectively. The results was compared with values giving in UNSCEAR 2000.

(Received January 8, 2013; Accepted February 25, 2013)

*Keywords:* Natural radiation; Annual effective dose equivalent; Health hazard; Cancer risk; Th-232; Ra-226; K-40

# 1. Introduction

Exposure to ionizing radiation from natural sources is a continuous and unavoidable feature of life. Human beings are exposed to natural background radiation every day from the ground, building materials, air, food, outer space, and even elements in their own bodies. Gamma radiation emitted from primordial radionuclide and their progeny is one of the main external sources of radiation exposure to the humans [1]. Terrestrial radioactivity, and the associated external exposure due to gamma radiation, depend primarily on the geological formation and soil type of the location; and these factors (geology and soil type) greatly influence the dose distribution from natural terrestrial radiation [2, 3].

Since natural radiation is the largest contributor of external dose to the world population, assessment of gamma radiation dose from natural sources is of particular importance. The concentrations of <sup>232</sup>Th, <sup>226</sup>Ra and <sup>40</sup>K vary widely depending on the location. Majority of the external gamma dose rate above typical soils (95%) arises from primordial radionuclides incorporated in the soil [4].

In addition, soil acts as a source of transfers of radionuclides through the food chain depending on their chemical properties and the uptake process by the roots to plants and animals [5]; hence, it is the basic indicator of the radiological status of the environment. These radionuclides take part in several biogeochemical processes that determine their mobility and availability for biological update [6]. The major potential hazard from the natural radiation is from external exposure either by direct exposure to soil or as they enter in many building materials.

Corresponding author: mouneersaleh@yahoo.com

The present study aims to assess the health risk due to exposure to naturally occurring terrestrial radionuclides in the Pontian District, Johor Malaysia.

#### 2. Materials and Methods

## 2.1 The study area

Pontian district is located between latitudes of  $1^{\circ} 15'$  and  $1^{\circ} 46'$  N, and longitudes 103 °10' and 103 °35' E. It is located in the southwest of the Johore State in Peninsular Malaysia. It covers a total land area of 919.5 km<sup>2</sup>, and has a population of about 149,938 as of Statistics 2010 [7]. The Pontian district is overlain by twelve soil types as classified by FAO/UNESCO [8] as shown in Figure 1 and Table 1.



Fig. 1. Soil types in the Pontian district of Johor, Malaysia.

Table. 1. The soil types in the Pontian district of Johor, Malaysia.

| Label | FAO UNIT                                               | Local name                          |
|-------|--------------------------------------------------------|-------------------------------------|
| 2     | Thionic Fluvisols                                      | Keranji                             |
| 5     | Vertic Cambisols-Eutric Gleysols                       | Selangor-Kangkong                   |
| 9     | Humic Gleysols-Dystric Histosols                       | Tanah Liat organan dan Tanah Kapor  |
| 10    | Dystric Histosols                                      | Gambut                              |
| 11    | Dystric Fluvisols - Dystric Gleysol                    | Telemong Akob- Tanah Lanar Tempatan |
| 18    | Xanthic Ferrasols -Dystric Gleysols                    | Holyrood Lunas                      |
| 20    | Ferric Acrisols - Ferric Acrisols                      | HarimauTampoi                       |
| 22    | Orthic Acrisols - Plinthic Ferralsols                  | Batu Anam-Melaka -Tavy              |
| 34    | Rhodic Ferralsols-Xanthic ferralsols                   | Segamat - Katong                    |
| 43    | Rhodic Nitosols - Ferric Acrisols                      | Kulai Yong Peng                     |
| 45    | Plinthic Acisols - Ferric Acrisols -Plinthic Ferrasols | Pohoi - Durian - Tavy               |
| 51    | Mined land                                             | Tanah lombong                       |



The Pontian district has mainly three geological formations underlying the soils [9] as follows: Quaternary, Triassic and Acid Intrusive. (38) as shown in table 2 and figure 2 [10].

Fig. 2 Geological background in Pontian district of Johor, Malaysia.

| Label | Geological name   | Composition                                                                                                                                      | Lithology                                                                  |  |  |
|-------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|
| G 2   | Quaternary 2      | Continental and marine deposits                                                                                                                  | Unconsolidated deposits with silt and clay (marine)                        |  |  |
| G 3   | Quaternary 3      | Continental and marine deposits                                                                                                                  | Unconsolidated deposits with humic clay, peat and silt.                    |  |  |
| G 4   | Quaternary 4      | Continental and marine deposits                                                                                                                  | Unconsolidated deposits with clay, sand, silt and gravel-undifferentiated. |  |  |
| G 14  | Triassic 14       | Interbedded sandstone, siltstone and<br>shale; widespread volcanics, mainly<br>tuffs of rhyolitic to dacitic<br>composition in central peninsula |                                                                            |  |  |
| G 38  | Acid Intrusive 38 | Intrusive rock                                                                                                                                   | Undifferentiated with igneous rock                                         |  |  |

| Table 2. The          | geological | background | type o | f Pontian | district |
|-----------------------|------------|------------|--------|-----------|----------|
| <i>i ubie 2. i ne</i> | geologicai | Duckground | iype o | 1 I Onnan | aisirici |

### 2.2. Measurements of Gamma Radiation Dose (GRD)

Gamma radiation dose measurements were made at the crossing points of the latitudinal and longitudinal lines as far as possible. Dose measurements were performed at point location using two survey meters manufactured by Ludlum Measurement, USA; Figure 2 shows the locations where measurements were conducted. Dose rate measurements were made until the readings were stable [11]; and at least two measurements were taken around the measuring point using each of the two detectors. The meter display was in microroentgen per hour ( $\mu R h^{-1}$ ); and the instruments have relativity linear energy response to gamma radiation between 0.04 and 1.2 MeV

[12]. The instrument was calibrated at higher dose rates by the Malaysian Nuclear Agency, which is a recognized by the IAEA as a Secondary Standards Dosimetry Laboratory (SSDL).



Fig. 3 External dose rate measurement locations.

#### 2.3. Gamma spectrometry

Soil samples were collected from different mukims (parish) in the Pontian district. Thirty two samples were taken from the upper 10 cm layer of soil. Samples were collected away from buildings, roads and rivers. The samples were packed in labeled polythene bags. The locations of samples were recorded with a global positioning system. In the laboratory, the samples were first dried in air for 24 h, cleared of stones and pebbles, dried at 105°C overnight, crushed and ground to a fine powder, homogenized, weighted and packed in standard 500 mL Marinelli beakers. About 5 g of each soil sample was used for the measurement of the gross alpha and gross beta. Samples were sealed and stored for four weeks to achieve secular equilibrium between radium and its progeny [13, 14].

Gamma activities were measured using spectroscopy with a coaxial high purity germanium detector (GC2018-7500 SL) with a relative efficiency of 20 %, and a resolution of 1.8 keV for the 1332 keV gamma ray emission of <sup>60</sup>Co. Genie 2000 (VI.3) software from Canberra was used to analyze the spectra. Energy was calibrated using a point source whereas efficiency was calibrated using a 500 mL multi-nuclide standard solution of: <sup>210</sup>Pb(46.54 keV), <sup>241</sup>Am (59.54 keV), <sup>109</sup>Cd (88.04 keV), <sup>57</sup>Co(122.07 keV), <sup>123m</sup>Te (159.00 keV), <sup>51</sup>Cr(320.07 keV), <sup>113</sup>Sn(391.71 keV), <sup>85</sup>Sr (513.99 keV), <sup>137</sup>Cs(661.62 keV), <sup>88</sup>Y(898 and1836 keV) and <sup>60</sup>Co(1173 and1332 keV). An empty Marinelli beaker was counted to strip the background from the samples. The value of Minimum Detectable Activity (MDA) was 13.23 Bq kg<sup>-1</sup> for <sup>40</sup>K, 1.00 Bq kg<sup>-1</sup> for <sup>226</sup>Ra and 1.69 Bq kg<sup>-1</sup> for <sup>232</sup>Th for a counting time of 21600 s [15, 16].

The activity of <sup>226</sup>Ra was determined based on gamma ray emissions of <sup>214</sup>Pb (295.21 and 352 keV) and <sup>214</sup>Bi (609 and 1120.29 keV), <sup>232</sup>Th was determined based on the emissions of <sup>212</sup>Pb (238.6 keV), <sup>208</sup>Tl (583.1 keV) and <sup>228</sup>Ac (911.2 keV) and that of <sup>40</sup>K was determined from the emission at 1461.8 keV. The concentrations of <sup>226</sup>Ra and <sup>232</sup>Th were calculated from the weighted mean activity values determined for various emissions. IAEA S-14, IAEA S-16 and IAEA SL-2 were used for quality assurance.

#### 2.5. Mapping isodose lines and production of an isodose map

Global Positioning System receiver Garmin (GPS 12 XL) was used to record the latitude and longitude of each location. Geological features, soil types and contour lines were mapped using ARCGIS software. The coordinates of each sample point were converted to the degree decimal unit. The World Geodetic System of 1984 was used for definition of the coordination system and it was used to generate the contour lines. Adjustments were made to take into account the boundaries of geological features and soil types [17].

## 3. Results and discussion

#### 3.1. Measurement of external gamma radiation dose rate

The reading was taken at 330 locations in the Pontian district at 1 m above the ground using two NaI based gamma detectors. The mean values of external measured dose rate and the 95% confidence interval for each mukim are shown in Table 3. Table 3 shows the external gamma dose rates ranged from 9 to 261 nGy  $h^{-1}$ . The mean external measured gamma dose rate is 69 nGy  $h^{-1}$ . The lowest mean dose rate is found to be 33 nGy  $h^{-1}$  in Sungai Karang mukim. The highest mean gamma dose rate was 94 nGy  $h^{-1}$  in Jeram Batu, which is higher than of average dose rate worldwide (59 nGy  $h^{-1}$ ).

| Mukim            | Ν   | Mean (nGy h <sup>-1</sup> ) | Std. Deviation | Std. Error | Range (nGy h <sup>-1</sup> ) |
|------------------|-----|-----------------------------|----------------|------------|------------------------------|
| Benut            | 46  | 78                          | 47             | 7          | 9-131                        |
| Sungei Pinggan   | 22  | 65                          | 46             | 10         | 9-113                        |
| Ayer Baloi       | 50  | 65                          | 51             | 7          | 9-157                        |
| Api-Api          | 28  | 64                          | 50             | 10         | 9-131                        |
| Pontian          | 41  | 69                          | 47             | 7          | 9-139                        |
| Rimba Terjun     | 31  | 73                          | 44             | 8          | 9-131                        |
| Air Masin        | 13  | 55                          | 44             | 12         | 9-131                        |
| Serkat           | 30  | 72                          | 40             | 7          | 9-157                        |
| Sungai Karang    | 24  | 33                          | 22             | 4          | 9-78                         |
| Jeram Batu       | 39  | 94                          | 53             | 8          | 13-261                       |
| Pengkalan Raja   | 6   | 41                          | 44             | 18         | 17-131                       |
| Pontian district | 330 | 69                          | 48             | 3          | 9-261                        |

Table 3. The mean external measured gamma dose rate for each Mukim

The mean weighted dose rate to the population from gamma radiation in the Pontian district is estimated to be 0.447 mSv y<sup>-1</sup>. The annual effective dose to the population was calculated using the conversion coefficient from the absorbed dose in air to the effective dose  $(0.7 \text{ Sv Gy}^{-1})$  received by adults [4] See Equation 1.

$$AE = DR(nGyh^{-1}) \times 24 \times 365.25 \times 0.2 \times 0.7 \times 10^{-3}$$
(1)

Where; AE = the outdoor annual effective dose equivalent DR = the measured dose rate The collective effective dose (SC), was estimated using the Equation 2

$$SC = AE \times N(P)$$
 (2)

Where N(P) is the population in the district. The collective effective dose rate was calculated to be  $0.126 \times 10^2$  man Sv y<sup>-1</sup>. The cancer risk (R) to an individual was estimated using equation (3).

$$R = AE \times AL_t \times RF \tag{3}$$

Where; AL<sub>t</sub> is the average life expectancy (70 years), RF is the risk factor  $(5.82 \times 10^{-2})$  [18, 19]. The computed lifetime effective dose and the lifetime cancer risk for each person living in Pontian. Table 4 shows the annual effective dose, mean lifetime dose and lifetime cancer risks for each Mukim.

| Mukim            | Population | Mean annual effective<br>dose equivalent (µSv) | Mean lifetime<br>dose (mSv) | Life time cancer risk |
|------------------|------------|------------------------------------------------|-----------------------------|-----------------------|
| Benut            | 14,598     | 267.12                                         | 6.66                        | 3.88×10 <sup>-4</sup> |
| Sungei Pinggan   | 7,183      | 224.74                                         | 5.60                        | 3.26×10 <sup>-4</sup> |
| Ayer Baloi       | 12,220     | 223.85                                         | 5.58                        | $3.25 \times 10^{-4}$ |
| Api-Api          | 12,446     | 219.92                                         | 5.48                        | 3.19×10 <sup>-4</sup> |
| Pontian          | 35,408     | 236.97                                         | 5.91                        | 3.44×10 <sup>-4</sup> |
| Rimba Terjun     | 27,235     | 251.34                                         | 6.27                        | 3.65×10 <sup>-4</sup> |
| Air Masin        | 4,695      | 187.82                                         | 4.68                        | 2.73×10 <sup>-4</sup> |
| Serkat           | 7,994      | 248.24                                         | 6.19                        | $3.60 \times 10^{-4}$ |
| Sungai Karang    | 1,787      | 112.92                                         | 2.82                        | $1.64 \times 10^{-4}$ |
| Jeram Batu       | 25,184     | 323.89                                         | 8.08                        | 4.70×10 <sup>-4</sup> |
| Pengkalan Raja   | 1,188      | 139.69                                         | 3.48                        | $2.03 \times 10^{-4}$ |
| Pontian district | 149,938    | 236.84                                         | 5.91                        | 3.44×10 <sup>-4</sup> |
|                  |            | 72                                             | 5.00                        | 2.93×10 <sup>-4</sup> |

Table 4. The mean annual effective dose, mean lifetime dose and lifetime cancer risks for each Mukim

# 3.2 Activities of <sup>226</sup>Ra, <sup>232</sup>Th and <sup>40</sup>K radionuclides

The activity concentrations were determined for 32 soil samples using (HPGe) detector. The measured activity concentration of <sup>232</sup>Th varied from  $2 \pm 1$  to  $113 \pm 9$  Bq kg<sup>-1</sup> with a mean value of  $53 \pm 4$  Bq kg<sup>-1</sup> as shown in Table 5. <sup>226</sup>Ra activity concentrations ranged from  $3 \pm 1$  to  $68 \pm 6$  Bq kg<sup>-1</sup> with a mean value of  $37 \pm 3$  Bq kg<sup>-1</sup>. The activity concentrations of <sup>40</sup>K ranged from  $26 \pm 3$  to  $683 \pm 29$  Bq kg<sup>-1</sup> with a mean value of  $293 \pm 14$  Bq kg<sup>-1</sup>. The measured activity concentration of <sup>226</sup>Ra and <sup>232</sup>Th are higher than the world average, whereas the <sup>40</sup>K is lower than the world average.

| Mukim            | <sup>226</sup> Ra (Bq kg <sup>-1</sup> ) |       | <sup>232</sup> Th (Bo | <sup>232</sup> Th (Bq kg <sup>-1</sup> ) |                | <sup>40</sup> K (Bq kg <sup>-1</sup> ) |     | Ra <sub>eq</sub> (Bq kg <sup>-1</sup> ) H <sub>e</sub> , |  |
|------------------|------------------------------------------|-------|-----------------------|------------------------------------------|----------------|----------------------------------------|-----|----------------------------------------------------------|--|
|                  | Mean ± Std Error                         | Range | Mean $\pm$ Std        | Range                                    | Mean $\pm$ Std | range                                  |     |                                                          |  |
| Benut            | 32±3                                     | 6-53  | 60±6                  | 6-94                                     | 349±13         | 91-480                                 | 145 | 0.392                                                    |  |
| Sungei Pinggan   | 58±4                                     | 52-63 | 44±4                  | 33-55                                    | 209±10         | 170-247                                | 136 | 0.368                                                    |  |
| Ayer Baloi       | 28±2                                     | 3-64  | 49±5                  | 4-113                                    | 313±14         | 127-616                                | 122 | 0.329                                                    |  |
| Api-Api          | 44±3                                     | 12-64 | 53±2                  | 2-93                                     | 286±13         | 72-430                                 | 142 | 0.382                                                    |  |
| Pontian          | 30±2                                     | 12-48 | 47±4                  | 45-49                                    | 49±5           | 26-72                                  | 101 | 0.271                                                    |  |
| Rimba Terjun     | 42±3                                     | 12-67 | 73±6                  | 9-113                                    | 354±17         | 67-628                                 | 173 | 0.468                                                    |  |
| Air Masin        | 28±3                                     | 12-44 | 53±5                  | 9-97                                     | 440±21         | 196-683                                | 138 | 0.373                                                    |  |
| Serkat           | 39±4                                     | 5-67  | 47±4                  | MDA-75                                   | 363±17         | 204-453                                | 134 | 0.361                                                    |  |
| Sungai Karang    | 21±2                                     | 3-48  | 17±1                  | 4-29                                     | 113±8          | 26-196                                 | 54  | 0.147                                                    |  |
| Jeram Batu       | 52±4                                     | 31-68 | 76±5                  | 48-109                                   | 406±21         | 183-574                                | 192 | 0.519                                                    |  |
| Pengkalan Raja   | 10±1                                     | 8-12  | 33±2                  | 29-36                                    | 99±7           | 87-110                                 | 64  | 0.173                                                    |  |
| Pontian district | 37±3                                     | 3-68  | 53±4                  | MDA-113                                  | 293±14         | 26-683                                 | 136 | 0.366                                                    |  |

Table 5. The activity concentrations of radionuclides,  $Ra_{eq}$  and  $H_{ex}$  in soil samples for each mukim in the *Pontian District.* 

According to UNSCEAR 2000 the average concentrations of <sup>226</sup>Ra, <sup>232</sup>Th and <sup>40</sup>K in Malaysia are 66 Bq kg<sup>-1</sup>(range from 49 Bq kg<sup>-1</sup> to 86 Bq kg<sup>-1</sup>); 82 Bq kg<sup>-1</sup> (ranged from 63 Bq kg<sup>-1</sup> to 110 Bq kg<sup>-1</sup>); and 310 Bq kg<sup>-1</sup> (ranged from 170 Bq kg<sup>-1</sup> to 430 Bq kg<sup>-1</sup>), respectively (UNSCEAR, 2000). The Mean lifetime dose and life time cancer risk for each person were slightly higher world average of 5.91 mSv and  $3.44 \times 10^{-4}$ , respectively. Table 6 shows a summary of <sup>226</sup>Ra, <sup>232</sup>Th and <sup>40</sup>K concentrations, annual effective dose, mean lifetime dose and life time cancer risk in different areas in Malaysia.

| Estate / District         | Concentration in soil (Bq kg <sup>-1</sup> ) |                   |                 | Dose Kean                 | Mean                                    | Mean    | Life ti               |                           |
|---------------------------|----------------------------------------------|-------------------|-----------------|---------------------------|-----------------------------------------|---------|-----------------------|---------------------------|
|                           | <sup>226</sup> Ra                            | <sup>232</sup> Th | <sup>40</sup> K | (nGy n<br><sup>-1</sup> ) | me ca<br>lifeti<br>(mS<br>effec<br>(μSv |         | me ca                 | Deference                 |
|                           | Mean                                         | Mean              | Mean            | Mean                      | tive dose<br>v)                         | me dose | ncer risk             | Keletenee                 |
| Pontian District          | 37                                           | 53                | 293             | 69                        | 237                                     | 5.91    | 3.44×10 <sup>-4</sup> | This study                |
| Kinta District,<br>Perak  | 112                                          | 246               | 277             | 222                       | 272                                     | 19      | 1.11×10 <sup>-3</sup> | Lee 2009 [20]             |
| Kg Sungai, Perak          | 196                                          | 628               | 475             | 458                       | 562                                     | 39      | 2.29×10 <sup>-3</sup> | Ramli 2009 a [21]         |
| Selama District,<br>Perak | 178                                          | 353               | 296             | 273                       | 335                                     | 23      | 1.36×10 <sup>-3</sup> | Ramli 2009 b [22]         |
| Ulu Tiram, Johor          | 44                                           |                   |                 | 200                       | 245                                     | 17      | 1.00×10 <sup>-3</sup> | Abdul Rahman 2007<br>[23] |
| Palong, Johor             |                                              |                   |                 | 500                       | 614                                     | 43      | 2.50×10 <sup>-3</sup> | Ramli 2004 [24]           |
| Melaka State              |                                              |                   |                 | 183                       | 225                                     | 16      | 9.15×10 <sup>-4</sup> | Ramli 2005                |
| Johor State               |                                              |                   |                 | 163                       | 200                                     | 14      | 8.15×10 <sup>-4</sup> | Ramli 2001 [25]           |
| World                     | 33                                           | 45                | 420             | 59                        | 72                                      | 5       | 2.9×10 <sup>-4</sup>  | UNSCEAR, 2000             |

Table 6 shows a summary of <sup>226</sup>Ra, <sup>232</sup>Th and <sup>40</sup>K concentrations, annual effective dose, mean lifetime dose and life time cancer risk in different areas in Malaysia.

#### 3.3 Radium equivalent activity (Ra<sub>eq</sub>)

 $\begin{array}{c} Ra_{eq} \text{ is used to assess the gamma radiation hazards associated with materials that contain} \\ ^{226}Ra, ^{232}Th \text{ and } ^{40}K. \text{ It is assumed that 370 Bq kg}^{-1} of ^{226}Ra, 259 Bq kg}^{-1} of ^{232}Th \text{ and } 4810 Bq kg}^{-1} \\ of ^{40}K \text{ produce similar } \gamma \text{-ray dose rates. } Ra_{eq} (Bq kg}^{-1}) \text{ is given by Equation 3 [26]:} \end{array}$ 

$$Ra_{eq} = {}^{226}Ra + 1.43 {}^{232}Th + 0.077 {}^{40}K$$
(4)

The maximum value must be less than 370 Bq kg<sup>-1</sup> so as to keep the annual radiation dose below 1.5 mGy y<sup>-1</sup>[27]. As shown in Table 5, Ra<sub>eq</sub> was ranged from 21 Bq kg<sup>-1</sup> to 273 Bq kg<sup>-1</sup> with a mean value of 136 Bq kg<sup>-1</sup>.

The external  $H_{ex}$  is an assessment of the hazard of the natural gamma radiation. The main objective of hazard index to keep the value less than unity. In addition,  $H_{ex}$  is an assessment of the hazard of the natural gamma radiation.  $H_{ex}$  is defined in the following equation [28]:

$$H_{ex} = \frac{^{226} Ra}{370} + \frac{^{232} Th}{259} + \frac{^{40} K}{4810} \le 1$$
(5)

 $H_{ex}$  was shown in Table 5, ranged from 0.056 to 0.737 with a mean value of 0.366.

# 3.4. Contour plots

Figures 4 shows the computer generated contour maps of gamma dose rate for the Pontian District.



Fig. 4. Contour map of gamma dose rate (nGy/h).

# 4. Conclusion

This study assessed the natural radioactivity and the associated health risk in the Pontian District, Johor Malaysia. The average measured external dose rate is 69 nGy  $h^{-1}$ . The obtained value is lower than the Malaysian average (92 nGy  $h^{-1}$ ). The mean population weighted dose rates and the annual effective dose from gamma radiation are 0.891 mSv y<sup>-1</sup> and 178  $\mu$ Sv, respectively.

The mean activity concentrations of  $^{232}$ Th,  $^{226}$ Ra and  $^{40}$ K are  $53 \pm 4$  Bq kg<sup>-1</sup>,  $37 \pm 3$  Bq kg<sup>-1</sup> and  $293 \pm 14$  Bq kg<sup>-1</sup>, respectively. The measured activity concentration of  $^{226}$ Ra and  $^{232}$ Th are higher than the world average, whereas is less than of Malaysia. The Lifetime outdoor annual equivalent and relative excess lifetime cancer risks for each person living in Pontian District were 5.91 mSv,  $3.44 \times 10^{-4}$  Sv year, respectively.

#### Acknowledgment

The authors would like to thank the Ministry of Higher Education, Malaysia for financial support. This study is supported by Universiti Teknologi Malaysia through Research University Grant scheme project number Q.J130000.7126.00H70.

### References

- [1] United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), Sources, Effects, and Risks of Ionizing Radiation (1993).
- [2] BEIR VII, Health risks from exposure to low levels of ionizing radiation. Washington, D.C. the National Academy of Sciences (2006).
- [3] United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), Sources, Effects and Risks of Ionizing Radiation (2000).
- [4] C. Klein, and C.S. Hurlbut, Manual of Mineralogy,20<sup>th</sup> ed. (John Wiley & Sons ,New York, 1985).
- [5] A. Jabbar, M. Tufail, W. Arshed, A. S. Bhatti, S. S. Ahmad, P. Akhter and M. Dilband, Transfer of radioactivity from soil to vegetation in Rechna Doab, Pakistan. Isotopes in Environmental and Health Studies, 46, 495 (2010).
- [6] L.J. Mandić, R. Dragović, S. Dragović, Distribution of lithogenic radionuclides in soils of the Belgrade region (Serbia). Journal of Geochemical Exploration **105**, 43 (2010).
- [7] Department of Statistical Malaysia. Basic population characteristics by administrative district (2010).

- [8] Director General of Agriculture Peninsular Malaysia, Map of Soil Types in Peninsular Malaysia L-40A series, 1st ed. (Kuala Lumpur, Malaysia, 1973).
- [9] A. T. Ramli, A.T. Abdul Rahman, and M.H. Lee, Statistical prediction of terrestrial gamma radiation dose rate based on geological features and soil types in Kota Tinggi district, Malaysia. Applied Radiation Isotopes, **59**, 393 (2000).
- [10] Director General of Geological Survey. Map of Mineral Resources in Johore State, Malaysia, 1st Edition. Ipoh, Malaysia (1982).
- [11] A.T. Ramli, Environmental Terresterial Gamma Radiation Dose and its Relationship with Soil Type and Underlying Geological Formation in Pontian Distric, Malaysia. Applied Radiation Isotopes 48(3), 407 (1997).
- [12] G.F. Knoll, Radiation Detection and Measurements, 2nd ed. (John Wiley & Sons, New York: John 1982).
- [13] N.M Ibrahim, A.H. Abd El Ghani, E.M. Shawky, E.M. Ashraf, M.A. Farouk, Measurement of radioactivity levels in soils in the Nile Delta and Middle Egypt. Health Physics 64, 620 (1993).
- [14] S. Mollah, N.M. Rahman, M.A. Kodlus, and S.R. Husain, Measurement of high natural background radiation levels by TLD at Cox and Bazar coastal areas in Bangladesh. Radiation Protection and Dosimetry 18, 39 (1987).
- [15] International Atomic Energy Agency (IAEA), Measurement of radionuclides in food and the environment, A Guidebook. Technical Report Series 295, (1989).
- [16] International Atomic Energy Agency (IAEA). Guidelines for radioelement mapping using gamma ray spectrometry data, -TECDOC-1363, IAE, Vienna, (2003).
- [17] A.T. Ramli, A.S. Sahrone, and H. Wagiran, Terrestrial gamma radiation dose study to determine the baseline for environmental radiological health practices in Melaka state, Malaysia. Journal of Radiological Protection, 25, 435 (2005).
- [18] International Commission on Radiological Protection (ICRP), The Recommendations of the International Commission on Radiological Protection. In: Annals of the ICRP, Publication 60. (Oxford:Pergamon Press, 1991).
- [19] K. Gursel, Risk assessment of baseline outdoor gamma dose rate levels study of natural radiation sources in Bursa, Turkey. Radiation Protection Dosimetry, 142, 324 (2010).
- [20] S.K. Lee, H. Wagiran, A. T Ramli, N. H Apriantoro, and A. K Wood, Radiological monitoring : terrestrial natural radionuclides in Kinta District, Perak, Malaysia. Environmental Radioactivity 100, 368 (2009).
- [21] A.T. Ramli, N.H. Apriantoro, H. Wagiran, S.K. Lee, and A.K. Wood, Health Risk implications of high background radiation dose rate in Kampung Sungai Durian, Kinta District, Perak, Malaysia. Global Journal of Health Science, 1, 140 (2009).
- [22] A.T. Ramli, N.H. Apriantoro, H. Wagiran, Assessment of radiation dose rates in the high terrestrial gamma radiation area of Selama District, Perak, Malaysia Applied Physics Research, 1, 45 (2009b).
- [23] A. T. Abdul Rahman, A.T. Ramli, Radioactivity levels of <sup>238</sup>U and <sup>232</sup>Th, the a and b activities and associated dose rates from surface soil in Ulu Tiram, Malaysia. Journal of Radioanalytic and Nuclear Chemistry, **273**, 653 (2007).
- [24] A.T Ramli, M. A Wahab, W Hussein and A. Khalik Wood, Environmental <sup>238</sup>U and <sup>232</sup>Th concentration measurements in an area of high level natural background radiation at Palong, Johor, Malaysia. Journal of Environmental Radioactivity 80, 287 (2005).
- [25] A.T Ramli, M.A Abdel Wahab and M.H.Lee, Geological influence on terrestrial gamma ray dose rate in the Malaysian state of Johore. Applied Radiation and Isotopes.54, 333(2001).
- [26] J. Beretka, P.J. Matthew, Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Physics, 48, 87 (1985).
- [27] M. Tufail, N. Akhtar, M. Waqas, Radioactive rock phosphate: the feed stock of phosphate fertilizers used in Pakistan. Health physics, 90, 361 (2006).
- [28] R. Veiga, N. Sanches, R.M. Anjos, K. Macario, J. Bastos, M. Iguatemy, J.G. Aguiar, A.M.A. Santos, B. Mosquera, C. Carvalho, M. Baptista Filho, N.K. Umisedo, Measurements of natural radioactivity in Brazilian beach sands. Radiat. Meas. 41, 189 (2006).