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A set of forty one substituted 2-phenyl-benzimidazole with anti allergic activity against 
IgE was subjected to three dimensional quantitative structure activity  relationship studies 
through recently introduced k- nearest neighbor molecular field analysis with step wise 
forward-backward as variable selection method to study the correlation between the 
molecular properties and the In-vitro IgE activities. In the present study k-NN-MFA 
calculations for both electrostatic and steric field were carried out. The master grid maps 
derived from the best model has been used to display the contribution of electrostatic 
potential and steric field. The k-NN-MFA models obtained by using 90 % of training set 
selection showed that electrostatic and steric interactions play major role in determining 
biological activity. The statistical results showed significant correlation coefficient r2 (q2) 
of 0.5757, r2 for external test set (pred_r2) 0.7238, coefficient of correlation of predicted 
data set (pred_r2se) of 0.5799, degree of freedom 33 and k nearest neighbor of 2.The k-NN 
MFA contour plots provided further understanding of the relationship between the 
structural features of substituted-2-phenyl-benzimidazole derivatives and their activities, 
which should be applicable to design new, potential anti allergic agents.  
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1. Introduction  
 
Allergic disorders such as rhinitis, sinusitis, atopic dermatitis, asthma, pollenosis and food 

allergy are most common causes of human diseases [1]. Hypersensitivity of the immune system to 
a specific antigen (allergens) plays a central role in the initiation of asthma and allergic rhinitis [2]. 
Key components of this process include Th2 lymphocytes, which are a major cellular infiltrate in 
asthmatic lung [3] and the antibody, immunoglobulin E (IgE), which is over produced in majority 
of people who suffer from allergic condition[4].However, numerous other components implicated 
for controlling IgE response are not always translated to prevent asthma[5-7]. 

Low affinity receptor for IgE (CD23) has been reported to have direct effects on IgE 
regulation, antigen presentation and airway hyper responsiveness [8-13].  Interleukin 4 (IL-4) and 
IL-13 also are required for IgE responses in-vitro and in-vivo[14-16], and have other putative roles 
in the development of allergy beside from their direct activation of IgE [17-19]. Degranulation of 
mast cells caused by antigen-antibody reactions triggers type-I allergic diseases and 
hypersensitivity of the immune system to a specific antigens like Th2 lymphocytes, IgE , IL-4 and 
13 , required for IgE responses plays a central role in the initiation [20-22].Other numerous 
mediators too have been reported to contribute to the development of allergy and asthma[23-24]. 
This complexity of allergic pathology impedes our efforts to establish disease control. 
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While there are a number of pharmacological agents available for the treatment of asthma 
and allergic rhinitis, a major shortcoming of many of these therapeutic alternatives is that they 
impact the disease state by targeting a single mediator that modifies a response at the target organ. 
By acting on effecter molecules, these drugs provide some symptomatic relief but do not modulate 
the course of the disease. Anti-histamines, for example, continue to be the drugs of choice for 
allergic rhinitis because they are somewhat effective and are linked to few side effects. However, 
anti-histamines provide little benefit for most cases of asthma, and require chronic dosing to 
achieve optimal effectiveness in allergic rhinitis. 

Leukotriene receptor antagonists have more recently been developed for the treatment of 
asthma but their focus on a single effecter molecule limits efficacy to a minority of patients [25], 
hence the search of a therapeutic carrier is needed which affects the multiple mediators of allergic 
diseases.  

Benzimidazole compounds constitute an important class of heterocyclic aromatic organic 
compounds for their versatile pharmacological activities such as antibacterial, antifungal, 
antihelmintic,antineoplastic, local analgesic, antihistaminic, vasodilative, hypotensive, spasmolytic 
[26-27]and antiallergic activities[28]. The main objective of the present study was the search for 
novel benzimidazole compounds that would show a promise to become useful antiallegic agents.  

During the last 20 years quantitative structure activity relationship (QSAR) models have 
gained an extensive gratitude in physical, organic, analytical, pharmaceutical and medicinal 
chemistry. The success of the QSAR approach can be explained by the insight offered based on the 
structural determination of chemical properties, and the possibility to estimate the properties of 
new chemical compounds without the need to synthesize and test them among the homologous 
series[29]. 

Many different approaches to QSAR have been developed over the years. The rapid 
increase in three-dimensional structural information (3D) of bioorganic molecules, coupled with 
the development of fast methods for 3D structure alignment (e.g. active analogue approach), has 
led to the development of 3D structural descriptors and associated 3D QSAR methods. The most 
popular 3D QSAR methods are comparative molecular field analysis (CoMFA) and comparative 
molecular similarity analysis (CoMSIA)[30-31].  

The CoMFA method involves generation of a common three dimensional lattice around a 
set of molecules and calculation of the steric and electrostatic interaction energies at the lattice 
points. The interaction energies are numerically very high when a lattice point is very close to an 
atom and special care needs to be taken in order to avoid problems arising because of this. The 
CoMSIA method avoids these problems by using similarity function represented as Gaussian. This 
information around the molecule is converted into numerical data using the partial least squares 
(PLS) method that reduces the dimensionality of data by generating components. However, a 
major disadvantage is that PLS attempts to fit a linear curve among all the points in the data set. 
Further, the PLS method does not offer scope for improvement in results. It has been observed 
from several reports that the predictive ability of PLS method is rather poor due to fitting of a 
linear curve between the available points.  

In the case of the CoMSIA method, molecular similarity is evaluated and used instead of 
molecular field, followed by PLS analysis [32]. Variable selection methods have also been adopted 
for optimal region selection in 3D QSAR methods and shown to provide improved QSAR models 
as compared to the original CoMFA technique. These considerations provide an impulsion for the 
development of fast, generally nonlinear, variable selection methods for performing molecular 
field analysis.  

With the above facts and in continuation of our research for newer antiallergic agents in 
the present study, we report here the development of a new method (kNN-MFA) that adopts a k-
nearest neighbor principle for generating relationships of molecular fields with the experimentally 
reported activity to provide further insight into the key structural features required to design 
potential drug candidates of this class. This method utilizes the active analogue principle that lies 
at the foundation of medicinal chemistry. 
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2. Computational methods  
 
2.1. Methodology  
 
We hereby report the models, as generated by k-NN-MFA in conjunction with stepwise 

(SW) forward-backward variable selection methods. In the k-NN-MFA method, several models 
were generated for the selected members of training and test sets, and the corresponding best 
models are reported herein. VLife Molecular Design Suite (VLifeMDS), allows user to choose 
probe, grid size, and grid interval for the generation of descriptors. The variable selection methods 
along with the corresponding parameters are allowed to be chosen, and optimum models are 
generated by maximizing q2. k-nearest neighbor molecular field analysis (kNN-MFA) requires 
suitable alignment of given set of molecules. This is followed by generation of a common 
rectangular grid around the molecules. The steric,hydrophobic and electrostatic interaction 
energies are computed at the lattice points of the grid using a methyl probe of charge +1. These 
interaction energy values are considered for relationship generation and utilized as descriptors to 
decide nearness between molecules. The term descriptor is utilized in the following discussion to 
indicate field values at the lattice points. The optimal training and test sets were generated using 
the random selection method. This algorithm allows the construction of training sets covering 
descriptor space occupied by representative points. Once the training and test sets were generated, 
kNN methodology was applied to the descriptors generated over the grid[32].  

 
2.2 Chemical Data 
 
Forty seven substituted 2-phenyl-benzimidazole derivatives as antiallergic agents were 

taken from the literature and used for k-NN-MFA analysis[28]. The above reported substituted 2-
phenyl-benzimidazole derivatives showed wide variation in their structure and potency profiles. k-
NN-MFA (3D QSAR) models were generated for these derivatives using a training set of 36 
molecules. Predictive power of the resulting models was evaluated by a test set of 5 molecules 
with uniformly distributed biological activities. Selection of test set molecules was made by 
considering the fact that test set molecules represent structural features similar to compounds in 
the training set. The various substituents of all compounds along with their actual and predicted 
biological activities are shown in Table 1. 

 
2. 3. Biological Activities  
 
 The negative logarithm of the measured IgE In-vitro IC50 (nM) [pIC50 = –log (IC50 × 10-9)] 

were used as dependent variable, thus correlating the data linear to the free energy change. Since 
some compounds exhibited insignificant activity, hence such compounds were excluded from the 
present study. Hence the study concerned here with forty-one compounds only. 

 
2. 4. Molecular Modeling and Alignment  
 
 The molecular modeling was carried out on HCL PC having intel core 2 duo processor 

and windows XP operating system, using the software namely: Molecular Design Suite supplied 
by the VLife Sciences, Pune (VLife MDS)[33]. The structures were constructed using the 2D draw 
application and converted to 3D structures. Energy minimization and geometry optimization was 
conducted using Merck Molecular Force Field (MMFF) method with Root Mean Square (RMS) 
gradient set to 0.01 Kcal/mol Ǻ and iteration limit to 10000. Alignment of all the forty-one 
compounds was done using template based alignment in MDS; the aligned structures were used 
for the study. In the template based alignment method, a template structure was defined and used 
as a basis for alignment of a set of molecules. In the present case, alignment was done using 
benzimidazole nucleus as template (Fig.1) for template-based alignment, as it was common to all 
the structures and most active compound as reference (Fig.2). The alignment of molecules is 
shown in Fig.3. 
 



1814 

     

N

N
H  

       Fig.1. Benzimidazole moiety as a template for alignment.   
 
 

   

N

N
H

N

NH H

O

ClCl

O

 
 

Fig.2. Reference molecule (1gg) used for alignment by template based alignment 
 
 

 
 
 

Fig.3. Template based alignment of Molecules. 
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For calculation of field descriptor values, using Tripos force field, all three electrostatic, 
hydrophobic and steric field type with cut offs 10.0 and 30.0 Kcal/mol respectively were selected 
and charge type was selected as Gasteiger – Marsili. Dielectric constant was set to 1.0 considering 
the distance dependent dielectric function. Probe setting was carbon atom with charge 1.0 and grid 
setting as follows: 
 
From    To   Interval 
X: -16.009  18.5522  2.0000 
Y: -11.1832  8.317    2.0000 
Z: -9.3227  15.3238  2.0000 
 

This resulted in calculation of 7020 field descriptors (2340 for each electrostatic, 
hydrophobic and steric) for all the compounds in separate columns. For performing QSAR 
analysis, all the invariable columns were removed from the work sheet, as they do not contribute 
to QSAR[34].  

 
2. 6. Selection of Training and Test Set  
 
The dataset of 41 molecules was divided into training and test set by Random selection 

method from a diverse range of 60% to 90% ,out of which 90% of training set for  model 1 and 
model 2 with pIC50 activity field as dependent variable and various 3D descriptors calculated for 
the compounds as independent variables. 

 
3. Experimental  
 
All the forty one compounds were built on workstation of molecular modelling software 

VlifeMDS, which is a product Vlife Sciences Pvt Ltd., India[33]. We hereby report the models, as 
generated by k-NN-MFA in conjunction with stepwise (SW) forward-backward variable selection 
methods shown in Table 3. In the present k-NN-MFA study, (-16.009 18.5522) x (-11.1832 to 
8.317) y (-9.3227to 15.3238) z, A0grid at the interval of 2.00 was generated around the aligned 
compounds. The hydrophobic, steric and electrostatic interaction energies were computed at the 
lattice points of the grid using a methyl probe of charge +1 of Gasteiger-Marsili type. These 
interactions energy values were considered for relationship generation and utilized as descriptors 
to decide nearness between molecules. 

 
3.1. Building k-NN-MFA Models 
 
Since there was a large pool of descriptors available to build model, stepwise variable 

selection method was used along with k-nearest neighborhood (k-NN) to find optimal sub-set of 
descriptors for k-NN-MFA model. The k-NN-MFA models were developed using step wise 
forward-backward method with cross correlation limit set to 0.5 and term selection to 4.0 and F-
test ‘out’ to 3.99. As some additional parameters, variance cut-off was set as 2 Kcal/mol Ǻ and 
scaling as auto scaling, additionally the k-nearest neighbour parameter setting was done within the 
range of 2-5 and prediction method was selected as distance based weighted average. The method 
described above has been implemented in software, Vlife Molecular Design Suite 
(VlifeMDS)[32], which allows user to choose probe, grid size, and grid interval for the generation 
of descriptors. The variable selection methods along with the corresponding parameters are 
allowed to be chosen, and optimum models are generated by maximizing q2.  

 
Steps involved in k-NN-MFA method [32] 

 
Molecules are optimized before alignment optimization is done by MOPAC energy 

minimization and optimization is necessary process for proper alignment of molecules around 
template.  
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1. K-NN-MFA method requires suitable alignment of given set of molecules, alignment are 
template based.  
2. This is followed by generation of common rectangular grid around the molecules; the 
hydrophobic, steric and electrostatic interaction energies were computed at the lattice points of the 
grid using a methyl probe of charge +1.  
3. The optimal training and test set were generated using random selection method.  
4. Model was generated by k-NN method, and models validated internally and externally by 
leave one out, external validation.  
5. Predict the activity of test set of compounds.  

Since the final equation is not very useful to represent efficiently the k-NN-MFA models, 
3D master grid maps of the best models are displayed. They represent area in space where steric 
and electrostatic field interactions are responsible for the observed variation of the biological 
activity.  

 
4. Results and discussion 
 
Training set of 36 and test set of 5 substituted-2-phenyl-benzimidazole derivatives having 

different substitution were employed. Following statistical parameters were used to correlate 
biological activity and molecular descriptors: n = number of molecules, Vn = number of 
descriptors, k = number of nearest neighbor, df = degree of freedom, r2= coefficient of 
determination, q2 = cross validated r2 (by the leave-one out method), pred_ r2 = r2 for external test 
set, pred_ r2se = coefficient of correlation of predicted data set. Selecting training and test set by 
random selection method, the Unicolumn statics was performed which is shown in Table 2. The 
unicolumn statistical analysis can be interpreted that the mean and standard deviation for the 
training and test sets provide insight into the relative difference in the mean and point density 
distribution of the two sets. The minimum and maximum values in both the training and test sets 
are compared such that the maximum of the test set should be less than that of the training set. The 
minimum of the test set should be greater than that of the training set, suggesting the interpolative 
behaviour of the test set (i.e., derived within the minimum–maximum range of the training set) 
which is prerequisite analysis for further QSAR study. 

 
The observed and predicted pIC50 values for model 1 are shown in Table 1. The plot of 

observed vs. predicted activity is shown in Fig.5. From the plot it can be seen that k-NN-MFA 
model is able to predict the activity of training set quite well (all points are close to regression line) 
as well as external. 

 
Table 1. Substituents, Experimental and Predicted Activity of substituted 2-phenyl 

benzimidazole used in training and test set by model-1. IC50 = Compound concentration in nano 
mole that led to 50% reduction in IgE, pIC50 = –log (IC50 × 10-9)[values converted from nM to M]: 
Training and Test data set developed using model 1, T = Test set molecule. 
   

   

N

N

N

N H

H

O

R2

R1

O

X Y  
Fig.4. Parent structure of substituted-2-phenyl-benzimidazole derivatives 
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Compound 
Name 

R1 R2 X Y 

IgE 
In- 

vitro 
IC50 
(nM) 

IgE In- vitro IC50 (M) 

Experimental 
activity 

Predicted 
activity 

1a Phenyl Phenyl H H 20 7.698970 7.38638 
1b 4-bromophenyl 4-bromophenyl H H 200 6.698970 6.71295 

1e 3-cholorophenyl 3-cholorophenyl H H 25 7.602060 7.42236 
1f 2-cholorophenyl 2-cholorophenyl H H 45 7.346780 7.84218 

1g 3,4-di-
cholorophenyl 

3,4-di-
cholorophenyl 

H H 40 7.397940 7.55046 

1h 2,3-di-
cholorophenyl 

2,3-di-
cholorophenyl 

H H 10 8.00000 8.309 

1i 3,5-di-
cholorophenyl 

3,5-di-
cholorophenyl 

H H 70 7.154900 7.64799 

1j(T) 2,4-di-
cholorophenyl 

2,4-di-
cholorophenyl 

H H 30 7.522870 6.8733 

1k 2,6-di-
cholorophenyl 

2,6-di-
cholorophenyl 

H H 400 6.397940 7.68033 

1m Penta -fluoro-
phenyl 

Penta -fluoro-
phenyl 

H H 4 8.397940 7.77429 

1n Phenyl 4-choloro 
phenyl 

H H 90 7.045750 7.02779 

1o 4-nitro phenyl 4-nitro phenyl H H 150 6.823900 7.00843 

1q 4-Cyanophenyl 4-Cyano phenyl H H 100 7.000000 6.83339 
1r 4-

Methoxyphenyl 
4-

Methoxyphenyl 
H H 30 7.522870 7.82023 

1s 3,5-
Methoxyphenyl 

3,5-
Methoxyphenyl 

H H 700 6.154900 6.37188 

1v 4-S-Methyl-
Phenyl 

4-S-Methyl-
Phenyl 

H H 150 6.823900 7.61186 

1w 4-Methyl 
Phenyl 

4-Methyl 
Phenyl 

H H 20 7.698970 7.14843 

1y 1-Naphthalene 1-Naphthalene H H 80 7.096910 7.0000 
1z CH2-2-

thiophene 
CH2-2-

thiophene 
H H 500 6.301030 6.89056 

1aa Cyclo-hex-3-
ene 

Cyclo-hex-3-
ene 

H H 40 7.397940 6.45345 

1cc Phenyl Cyclohexyl H H 10 8.000000 8.45201 

1dd CH3 Cyclohexyl H H 100 7.000000 7.09691 

1ee(T) 3,4-
dichlorophenyl 

Cyclohexyl H H 0.8 9.096910 8.30988 

1ff 4-Chlorophenyl Cyclohexyl H H 06 8.221840 8.3385 

1gg(T) Cyclohexyl 3,4-
dichlorophenyl

H H 0.4 9.397940 8.61109 

1hh(T) Cyclohexyl 4-Chlorophenyl H H 8 8.096910 8.61109 

1ii 1-Adamantyl 2-fluorophenyl H H 10 8.000000 7.49638 
1jj 1-Adamantyl 4-fluorophenyl H H 10 8.000000 7.92383 

1kk 2-Pyridyl 1-Adamantyl H H 06 8.221840 8.19813 

1ll 3-Pyridyl 1-Adamantyl H H 20 7.698970 8.2023 
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Compound 
Name 

R1 R2 X Y 

IgE 
In- 

vitro 
IC50 
(nM) 

IgE In- vitro IC50 (M) 

Experimental 
activity 

Predicted 
activity 

1mm Cyclohexyl Cyclohexyl H H 4 8.397940 8.11158 

1nn 1-Adamantyl 1-Adamantyl H H 4 8.397940 7.84826 
1oo Cycloheptyl Cycloheptyl H H 1.5 8.823900 7.78798 

1qq Cyclobutyl Cyclobutyl H H 400 6.397940 6.58576 

1rr Cyclopropyl Cyclopropyl H H 1000 6.000000 6.77284 
1ss 4-methyl-

cylcohexyl 
4-methyl-
cylcohexyl 

H H 4 8.397940 7.99696 

1vv Cinnamyl Cinnamyl H H 70 7.154900 7.3888 
1xx Phenyl Phenyl CH3 H 800 6.096910 6.87683 

1yy Cyclohexyl Cyclohexyl COOCH2CH3 H 7 8.154900 8.55255 
1zz Cyclohexyl Cyclohexyl COCH3 H 1.5 8.823900 8.11095 

1aaa(T) Cyclohexyl Cyclohexyl H 2-F 2 8.698970 8.27301 

 
 

 
Fig 5. Graph of Actual vs. Predicted activities for training and test set molecules from the 

k-NN-MFA model 1, A) Training set (Red dots) B) Test set (Blue dots) 
 

Table 2. Unicolumn Statics of Training and Test Sets. 
 
Unicolumn 
statics 
 

Average 
 

Max 
 

Min 
 

Std. Deviation 
 

For Training Set 
 

7.6011 9.3979 6.0000 0.8109 

For Test Set 
 

7.5046 8.8239 6.0969 1.2744 

 
 

During the k-NN-MFA investigation, selection of training and test set from 60 % to 90 % 
were investigated. The 90 % selection produced a significant result as compare to others. The k-
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NN MFA for substituted-2-phenyl-benzimidazole derivatives using SW variable selection methods 
resulted in several statistically significant models, of which corresponding best models are 
reported herein.  

The model selection criteria being the value of q2, the internal predictive ability of the 
model, and that of pred_ r2, the ability of model to predict the activity of external test set. For 
activity against IgE, model 1 generated with SW variable selection method, found to be 
statistically most significant especially with respect to external predictive ability. The model 
showed internal Predictive ability of about 58 % (q2 =0.5757) and external predictive ability of 
about 70 %( pred_ r2 =0.7238). Another statistically significant model 2 was obtained for 
antiallergic activity against IgE, through SW k-NN MFA justified by internal and external 
predictive ability of the model as 59% (q2 =0.5923) and 51% (pred_ r2=0.5127) respectively. The 
statistical results are depicted in Table 3. 
 
 
 

Table 3. Stastical results of k-NN-MFA method. 
 

Parameters 
 

Model 1 
 

Model 2 
 

N 36 36
K 2 2 
q2 0.5757 0.5923 

pred_ r2 0.7238 0.5127 
pred_ r2 se 0.5799 0.4102 

Descriptors 
 

S_592 
30.0000    30.0000 

S_1473 
-0.4357    -0.2719 

E_2018 
-0.5941   -0.5569 

E_2018 
0.7396    0.7974 

Vn 2 2 
 

It is known that the CoMFA method provides significant value in terms of a new molecule 
design, when contours of the PLS coefficients are visualized for the set of molecules. Similarly, 
the k-NN-MFA models provide direction for the design of new molecules in a rather convenient 
way. The points which contribute to the k-NN-MFA model 1 are shown in Fig. 6. The range of 
property values for the chosen points may help in the design of new potent molecules (Fig. 6). 
 

 
 

Fig.6. 3D-alignement of molecule with the important steric and electrostatic point 
Contributing to the model with range of values shown in parenthesis 
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The k-NN-MFA models obtained by using 90 % of training set selection showed that 
electrostatic and steric interactions play major role in determining biological activity S_592 in 
model 1 and S_1473  in model 2  are steric field descriptors similarly E_2018 in model 1 and  
E_2018 in  model 2 are electrostatic field descriptors. Negative value in electrostatic field 
descriptors indicates that negative electronic potential is required to increase activity and more 
electronegative substituent group is preferred in that position, positive range indicates that group 
that imparting positive electrostatic potential is favourable for activity so less electronegative 
group is preferred in that region. Similarly negative range in steric descriptors indicates that 
negative steric potential is favourable for activity and less bulky substituent group is preferred in 
that region, positive value of steric descriptors reveals that positive steric potential is favourable 
for increase in activity and more bulky group is preferred in that region.  

 
6. Conclusion 
 
The model developed to predict the structural features of substituted-2-phenyl-

benzimidazole derivatives against IgE, reveals useful information about the structural features 
requirement for the molecule. The master grid obtained for the various k-NN-MFA models show 
that negative value in electrostatic field descriptors indicates the negative electronic potential is 
required to increase activity and more electronegative substituent group is preferred in that 
position, positive range indicates that the group which imparts positive electrostatic potential is 
favourable for activity so less electronegative group is preferred in that region. Negative range in 
steric descriptors indicates that negative steric potential is favourable for activity and less bulky 
substituent group is preferred in that region. Positive value of steric descriptors reveals that 
positive steric potential is favourable for increase in activity and more bulky group is preferred in 
that region . In both the optimized models, Model 1 is giving very significant results.  The 
developed models also possess promising predictive ability as discerned by testing on the external 
test set and should be useful to elucidate the relationship between compound structure and 
biological activities and to facilitate design of more potent and selective anti allergic agents.  
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