ON THE INDEPENDENCE POLYNOMIALS OF CERTAIN MOLECULAR GRAPHS

MOHAMMAD H. REYHANI, SAEID ALIKHANI ${ }^{a}$, ROSLAN HASNI ${ }^{\text {b* }}$
Department of Mathematics, Faculty of Science, Islamic Azad University, Yazd Branch, Yazd, Iran
${ }^{a}$ Department of Mathematics, Yazd University 89195-741, Yazd, Iran
${ }^{\text {b }}$ School of Mathematical Sciences, Universiti Sains Malaysia
11800 USM, Penang, Malaysia

The independence polynomial of a molecular graph G is the polynomial $I(G, x)=\sum i_{k} X^{k}$, where i_{k} denote the number of independent sets of cardinality k in G. In this paper, we consider specific graphs denoted by $G(m)$ and $G_{1}(m) G_{2}$ and obtain formulas for their independence polynomials which are in terms of Jacobsthal polynomial. Also we compute the independece polynomal of another kind of graphs.
(Recieved November 17, 2011; Accepted February 10, 2012)
Keywords: Independence polynomial; Jacobsthal polynomial; Graph

1. Introduction

A simple graph $G=(V, E)$ is a finite nonempty set $V(G)$ of objects called vertices together with a (possibly empty) set $E(G)$ of unordered pairs of distinct vertices of G called edges. In chemical graphs, the vertices of the graph correspond to the atoms of the molecule, and the edges represent the chemical bonds.

An independent set of a graph G is a set of vertices where no two vertices are adjacent. The independence number is the size of a maximum independent set in the graph. For a graph G with independence β, let i_{k} denote the number of independent sets of cardinality k in $G(k=0,1, \ldots, \beta)$. The independence polynomial of $G, I(G, x)=\sum_{k=0}^{\beta} \dot{d}_{k} x^{k}$, is the generating polynomial for the independent sequence ($i_{0}, i_{1}, i_{2}, \ldots, i_{\beta}$) ([3]). The path P_{4} on 4 vertices, for example, has one independent set of cardinality 0 (the empty set), four independent sets of cardinality 1 , and three independent sets of cardinality 2 ; its independence polynomial is then $I\left(P_{4}, x\right)=1+4 x+3 x^{2}$.

Hoede and Li [5] obtained the following recursive formula for the independence polynomial of a graph.

Theorem 1. For any vertex v of a graph $G, I(G, x)=I(G-v, x)+x I(G-[v], x)$ where $[v]$ is the closed neighberhood of v, contains of v, together with all vertices incident with v.

[^0]Let us observe that if G and H are isomorphic, then $I(G, x)=I(H, x)$. The converse is not generally true. For Two graphs G and H are independent equivalent, written $G \sim H$, if $I(G, x)=I(H, x)$. A graph G is independent unique, if $I(H, x)=I(G, x)$ implies that $H \cong G$. Let $[G]$ denote the independent equivalence class determined by the graph G under the equivalence relation \sim. Clearly, G is independent unique if and only if $[G]=\{G\}$. A zero of $I(G, x)$ is called a independence zero of G.

The corona of two graphs G_{1} and G_{2}, as defined by Frucht and Harary in [4], is the graph $G_{1} \circ G_{2}$ formed from one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2}, where the ith vertex of G_{1} is adjacent to every vertex in the ith copy of G_{2}. The corona $G \circ K_{1}$, in particular, is the graph constructed from a copy of G, where for each vertex $v \in V(G)$, a new vertex v and a pendant edge $v v^{\prime}$ are added.

In Section 2, we study Jacobsthal polynomial and introduce two graphs with specific structures denoted by $G(m)$ and $G_{1}(m) G_{2}$. Using the results related to Jacobsthal polynomial, we compute the independence polynomials of $G(m)$ and $G_{1}(m) G_{2}$ in Section 3 .

2. Jacobsthal polynomial

Jacobsthal polynomials, $J_{n}(x)$, named after the German mathematician E. Jacobsthal are related to Fibonacci polynomials. They are defined by
$J_{n}(x)=J_{n-1}(x)+x J_{n-2}(x)$
where $J_{1}(x)=J_{2}(x)=1$ (see [6], p.469).
In this section, we shall find the zeros of $J_{n}(x)$. First, we need the following two lemmas to obtain a solution of Jacobsthal polynomials.

Lemma 1. For any real number $u, J_{n}\left(u^{2}+u\right)=\sum_{i=0}^{n-1}(1+u)^{i}(-u)^{n-1-i}$.
Proof. It is clear that the result holds when $n=2$. Now let $n \geq 3$. By induction, we have

$$
\begin{gathered}
J_{n}\left(u^{2}+u\right)=J_{n-1}\left(u^{2}+u\right)+\left(u^{2}+u\right) J_{n-2}\left(u^{2}+u\right) \\
=\sum_{i=0}^{n-2}(1+u)^{i}(-u)^{n-2-i}+\left(u^{2}+u\right) \sum_{i=0}^{n-3}(1+u)^{i}(-u)^{n-3-i} \\
=\sum_{i=0}^{n-2}(1+u)^{i}(-u)^{n-2-i}-\sum_{i=0}^{n-3}(1+u)^{i+1}(-u)^{n-2-i} \\
=(1+u)^{n-2}+\sum_{i=0}^{n-3}(1+u)^{i}(-u)^{n-2-i}- \\
\sum_{i=0}^{n-3}(1+u)^{i+1}(-u)^{n-2-i} \\
=(1+u)^{n-2}+\sum_{i=0}^{n-3}(1+u)^{i}(-u)^{n-1-i} \\
=\sum_{i=0}^{n-1}(1+u)^{i}(-u)^{n-1-i}
\end{gathered}
$$

Corollary 1. For any real number $u,(2 u+1) J_{n}\left(u^{2}+u\right)=(1+u)^{n}-(-u)^{n}$.

Proof. The result follows from Lemma 1 by using the identity
$a^{n}-b^{n}=(a-b)\left(\sum_{i=0}^{n-1} a^{i} b^{n-1-i}\right)$,
for $a=1+u, b=-u$.
Lemma 2. ([2], p.64) For real numbers a, b and positive integer n,
$a^{n}-b^{n}=\left\{\begin{array}{cc}(a-b) \prod_{s=1}^{\frac{n-1}{2}}\left(a^{2}+b^{2}-2 a b \cos \frac{2 s \pi}{n}\right) ; & n \text { is odd, } \\ (a-b)(a+b) \prod_{s=1}^{\frac{n-2}{2}\left(a^{2}+b^{2}-2 a b \cos \frac{2 s \pi}{n}\right) ;} & n \text { is even. }\end{array}\right.$
Theorem 2. For any positive integer $n, J_{n}(x)=\prod_{s=1}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\left(2 x+1+2 x \cos \frac{2 s \pi}{n}\right)$.
Proof. If put $a=1+u, b=-u$, we have $a-b=a^{2}-b^{2}=1+2 u$, therefore by using Lemma 2 and Corollary 1 , for any real number $u \neq-\frac{1}{2}$,
$J_{n}\left(u^{2}+u\right)=\prod_{s=1}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\left(2 u^{2}+2 u+1+2\left(u^{2}+u\right) \cos \frac{2 s \pi}{n}\right)$.
Observe that for any real number x with $x>-\frac{1}{4}$, there is a real number $u \neq-\frac{1}{2}$ such that $u^{2}+u=x$. Thus for each real number with $x>-\frac{1}{4}, J_{n}(x)=\prod_{s=1}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\left(2 x+1+2 x \cos \frac{2 s \pi}{n}\right)$.
Since $J_{n}(x)$ is a polynomial with degree less than n, the above equality also holds for any real number $x \leq-\frac{1}{4}$. Thus the result is obtained.

3. Independence polynomial of certain graphs

In this section we consider some specific graphs and compute their independence polynomial (see [1]). Let P_{m+1} be a path with vertices labeled by $y_{0}, y_{1}, \ldots, y_{m}$, for $m \geq 0$ and let G be any graph. Denote by $G_{V_{0}}(m)$ (or simply $G(m)$, if there is no likelihood of confusion) a graph obtained from G by identifying the vertex v_{0} of G with an end vertex y_{0} of P_{m+1} (see Figure 1). For example, if G is a path P_{2}, then $G(m)=P_{2}(m)$ is the path P_{m+2}. Also, we denote the graph obtained from graphs G_{1} and G_{2} by adding a path P_{m} from a vertex in G_{1} to a vertex
of G_{2}, by $G_{1}(m) G_{2}$. (Figure 1).

Fig.1. Graphs $G(m)$ and $G_{1}(m) G_{2}$, respectively.

Theorem 3. Let $n \geq 2$ be integer. Then, the independence polynomial of $G(n)$ is $I(G(n), x)=J_{n}(x) I(G(1), x)+x J_{n-1}(x) I(G, x)$.

Proof. Proof by induction on n. Since $J_{1}(x)=J_{2}(x)=1$, the result is true for $n=2$ by Theorem 1. Now suppose that the result is true for all natural numbers less than n and prove it for n. By using Theorem 1 for $v=y_{n}$, and induction hypothesis, we have

$$
\begin{gathered}
I(G(n), x)=I(G(n-1), x)+x I(G(n-2), x)= \\
=J_{n-1}(x) I(G(1), x)+x J_{n-2}(x) I(G, x) \\
+x\left(J_{n-2}(x) I(G(1), x)+x J_{n-3}(x) I(G, x)\right. \\
=\left(J_{n-1}(x)+x J_{n-2}(x)\right) I(G(1), x)+x\left(J_{n-2}(x)+x J_{n-3}(x)\right) I(G, x) \\
=J_{n}(x) I(G(1), x)+x J_{n-1}(x) I(G, x) .
\end{gathered}
$$

The following theorem gives the formula for computing the independence polynomial of graphs $G_{1}(m) G_{2}$ as shown in Figure 1 :

Theorem 4. Let $n \geq 5$ be integer. The independence polynomial of $G_{1}(n) G_{2}$ is

$$
\begin{aligned}
& I\left(G_{1}(n) G_{2}, x\right)= \\
& I\left(G_{1}(1), x\right) I\left(G_{2}(1), x\right) J_{n-2}(x)+x\left(I\left(G_{1}(1), x\right) I\left(G_{2}, x\right)\right. \\
& \left.+I\left(G_{1}, x\right) I\left(G_{2}(1), x\right)\right) J_{n-3}(x)+x^{2} I\left(G_{1}, x\right) I\left(G_{2}, x\right) J_{n-4}(x)
\end{aligned}
$$

Proof. Proof by induction on n. If $n=5$, then by Theorems 1 and 3, and induction hypothesis, we have

$$
\begin{aligned}
& I\left(G_{1}(5) G_{2}, x\right)=I\left(G_{1}(1), x\right) I\left(G_{2}(3), x\right)+x\left(I\left(G_{1}, x\right) I\left(G_{2}(2), x\right)=\right. \\
& =(1+x) I\left(G_{1}(1), x\right) I\left(G_{2}(1), x\right)+x\left(I\left(G_{1}(1), x\right) I\left(G_{2}, x\right)\right. \\
& \left.+I\left(G_{1}, x\right) I\left(G_{2}(1), x\right)\right)+x^{2} I\left(G_{1}, x\right) I\left(G_{2}, x\right) .
\end{aligned}
$$

So the theorem is true for $n=5$. Now suppose that the result is true for less than n and we prove it for n. By Theorems 1 and 3, and induction hypothesis, we have

$$
\begin{aligned}
& I\left(G_{1}(n) G_{2}, x\right)= \\
& I\left(G_{1}(1), x\right) I\left(G_{2}(n-2), x\right)+x\left(I\left(G_{1}, x\right) I\left(G_{2}(n-3), x\right)=\right. \\
& I\left(G_{1}(1), x\right) I\left(G_{2}(1), x\right) J_{n-2}(x)+x\left(I\left(G_{1}(1), x\right) I\left(G_{2}, x\right)\right.
\end{aligned}
$$

$$
\left.+I\left(G_{1}, x\right) I\left(G_{2}(1), x\right)\right) J_{n-3}(x)+x^{2} I\left(G_{1}, x\right) I\left(G_{2}, x\right) J_{n-4}(x)
$$

Theorem 3 implies that all forms of $G_{1}(m) G_{2}$ have the same independence polynomials. As application of Theorem 3, we obtain the following formula:

Corollary 2 .

1. The independence polynomial of path P_{n} is

$$
I\left(P_{n}, x\right)=J_{n+2}(x)=\prod_{s=1}^{\left\lfloor\frac{n+1}{2}\right\rfloor}\left(2 x+1+2 x \cos \frac{2 s \pi}{n+2}\right) .
$$

2. The independence polynomial of cycle $C_{n}(n \geq 2)$ is

$$
I\left(C_{n}, x\right)=J_{n+1}(x)+x J_{n-1}(x) .
$$

Proof.

1. By using Theorem 1 , for $G=K_{1}$, we have

$$
\begin{gathered}
I\left(P_{n+1}, x\right)=I\left(K_{1}(n), x\right)=J_{n}(x) I\left(K_{1}(1), x\right)+x J_{n-1}(x) I\left(K_{1}, x\right) \\
=(1+2 x) J_{n}(x)+x J_{n-1}(x)+x^{2} J_{n-1}(x) \\
=J_{n+2}(x)+x J_{n+1}(x) \\
=J_{n+3}(x) .
\end{gathered}
$$

So we have the result.
2. It follows from Theorems 1 and Part 1.

References

[1] S. Alikhani, M.A. Iranmanesh, Digest Journal of Nanomaterials and Biostructures 5, (1), 1 (2010).
[2] S. Barnard, J.F. Child, Higher-Algebra, Macmillan, London, (1955).
[3] I. Gutman, F. Harary, Utilitas Mathematica 24 (1983)97-106.
[4] R. Frucht, F. Harary, Aequationes Math, (1970); 4, 322-324.
[5] C. Hoede, X. Li, Discrete Math. 25 (1994), 219-228.
[6] T. Koshy, Fibonacci, Lucas Numbers with Applications, A Wiley-Interscience Series of Texts, (2001).

[^0]: *Corresponding author: hroslan@cs.usm.my

