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In this letter, we reported a hydrothermal method for synthesizing flower-shaped 
ZnSnanocrystal using Zn(NO3)2∙6H2O and thioacetamide as precursors. The prepared 
flower-shaped ZnS was characterized by SEM, XRD, EDX and fluorescence 
spectrophotometer. The results indicate the proposed synthesis method could yield a high 
purity of flower-shaped ZnS with diameters of 110 nm.The application of these 
ZnSnanoflowersas electrochemical glucose sensor was successfully explored. Due to the 
high surface area and excellent electrocatalytic activity of the ZnSnanoflower, the 
constructed electrochemical sensor exhibited a high selectivity and a low detection limit. 
Moreover, the proposed glucose sensor also displayed excellent stability, reproducibility 
and anti-interference property. 
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1. Introduction 
 
Zinc sulfide (ZnS) is group II–IV binary compound semiconductor and it has traditionally 

shown exceptional physical and chemical properties and a promise for novel diverse applications, 
such as electroluminescence, sensors, lasers, and so on[1-4].Its structure and chemical properties 
are comparable to ZnO, but the ZnS have not been investigated in much detail relative to ZnO[5-
10]. 

Reliable and fast detection of glucose is important in many fields such as clinical 
diagnostics and food industry[11-20]. Moreover, blood glucose monitoring is particularly 
important in the care of diabetes because it affecting about 200 million people around the world 
[21, 22]. Therefore, the development of glucose sensors with high sensitivity and selectivity, good 
stability, fast response, and low cost has driven tremendous research efforts for the past decade. 
Particularly, electrochemical glucose sensor plays a leading role in this field. However, the most of 
the glucose electrochemical biosensors are based on glucose oxidase bound to electrode 
transducers. The disadvantages of the enzymatic sensors are lack of stability because of the 
intrinsic nature of the enzyme. The performance of the enzyme can be easily influenced by 
chemical compounds, pH, temperature and humidity [23].Therefore,  the development of a 
nonenzymatic glucose sensor is an alternative approach and it exhibits attractive advantages 
including sufficient stability, simplicity of operation and oxygen limitation-free [24, 25].In this 
work, we reported the fabrication of a nonenzymatic glucose sensor based onflower-shaped 
ZnSnanocrystals modified grassy carbon electrode. The fabricated sensor exhibits a wide linear 
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detection range with a low detection limit.Moreover, the sensor also exhibits high selectivity to the 
target analyte. 

 
 
2. Experimental 
 
2.1 Materials 
 
Zinc nitrate hexahydrate (Zn(NO3)2∙6H2O), thioglycolic acid (TGA), thioacetamide (TAA), 

glucose, uric acid (UA), dopamine (DA), ascorbic acid (AA) and acetylcholine (Ach) were 
purchased from Sigma-Aldrich. All other chemicals used were analytical grade reagents without 
further purification. Milli-Q water (18.2 MΩ cm) was used throughout the experiments. 

 
2.2 Preparation of flower-shaped ZnS nanocrystals 
 
In a typical preparation process, as-received zinc nitrate hexahydrate (5 g) was dissolved 

in 50 mL of distilled water. Then, 1 mL of TGA (0.05 M) was slowly added into the solution.  
After 10 min stirring, a stoichiometric amount ofTAA was slowly added as S source. After 30 min 
stirring, the solution was transferred to a 100 mL Teflon-lined stainless steel autoclave and heated 
at 110―150°C for 5 h.The obtained samples were centrifuged and dried in an oven at 70°C to 
result ZnS(denoted as ZnS-1, ZnS-2 andZnS-3 for the hydrothermal temperature of 110, 130 and 
150°C, respectively).  

 
2.3 Characterizations 
 
X-ray diffraction patterns were collected from 20° to 90° in 2θ by a XRD with Cu Kα 

radiation (D8-Advanced, Bruker, Germany). Surface morphology of samples were analyzed by 
scanning electron microscope (SEM, S-4700, HITACHI, Japan). The photoluminescence (PL) 
emission curves were obtained by a fluorescence spectrophotometer. The excitation of all analysis 
was set at 280 nm at room temperature and the emission curves were recorded from 300 to 500 nm.  

 
2.4 Fabrication of glucose electrochemical sensor and electrochemical measurement 
 
For the fabrication of glucose electrochemical sensor, the as-synthesized ZnSnanoflowers 

were coated onto the glassy carbon electrode (GCE). The GCE was carefully polished using 
alumina slurry (1.0, 0.3, and 0.05 mm in sequence) followed by rinsing with water. For the 
electrode surface modification, 5 μL of ZnS suspension was cast onto the surface of the pretreated 
GCE and dried at room temperature.Electrochemical measurements were performed on a CH 
Instruments 660A electrochemical Workstation (CHI-660 A, CH Instruments, Texas, USA) using 
a three electrode system. A platinum wire was used as the auxiliary electrode and an Ag/AgCl (3M 
KCl) as the reference electrode. 

 
 
3. Results and discussion 
 
Fig. 1 shows the typical SEM images of ZnS-1 and ZnS-3. It can be observed that the 

ZnSnanocyrstals formed through the hydrothermal condition display a flower like nanostructure. 
The average diameter of the ZnSnanoflower is about 110 nm (calculated based on more than 200 
ZnSnanoflowers). It also can be seen that the morphology of the ZnS flowers formed under 110°C 
and 150°C showed no significant difference, indicating our proposed synthesis method is reliable 
and has excellent robustness.  
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The luminescence property of synthesized ZnS was also investigated. Figure 3 shows the 
room temperature photoluminescence spectrum of free ZnS-3 at the excitation wavelength of 280 
nm.The near band edge emission of ZnSnanoflowers occurs at about 330 nm  is  attributed to the 
recombination of the photogenerated electron hole pairs. The visible emission band at 380 nm and 
some other minor peaks is mainly due to the recombination of electrons caused by surface defects 
and vacancies [28]. 

 

 
 

Fig. 3.PL spectrum of ZnS-3 
 
 

The electrochemical behavior of 1 mM glucose was investigated by cyclic voltammetry at 
bare GCE, ZnS-1/GCE, ZnS-2/GCE and ZnS-3/GCE respectively. Figure 4 presents the CV 
profiles of GCE, ZnS-1/GCE, ZnS-2/GCE andZnS-3/GCEin the absence and presence of 1 mM 
glucosein 0.1M PBS. It can be seen that the bare GCE only exhibited a small background current. 
In contrast, ZnSnanoflowers modified GCEs all displayed significant enhancement toward 
oxidation of glucose. Among the electrode, ZnS-3/GCE showed the best performance for electro-
oxidation of glucose. A well-defined oxidation peak was observed at 0.57 V with current of 87.01 
μA. This enhancement of glucose detection can be ascribed to the excellent electrocatalytic 
activity of ZnSnanoflowers and their specific nanostructure, which owing a high specific surface 
area. 

The effect of pH on the electro-oxidation of glucose has been investigated. Figure 5A 
shows the oxidation peak current of glucose at various pH value of PBS. It can be seen that the 
peak currents gradually increase along with the pH increases from 4 to 7.5. The maximum value 
was obtained at pH 7.5 with 87.01 μA. Afterwards, the current responses decrease when further 
increasing of the pH. The effect of amount of ZnS-3 on the electrochemical detection performance 
of the glucose was also studied. As shown in Figure 5B, the oxidation peak current exhibits 
obvious increase tendency along with the amount of modifier increases from 1 to 5 μL. However, 
further increasing ZnS leads a slightly decreasing of the oxidation current response. The reason of 
current decreasing probably due to the electrons of glucose take longer time to transfer through 
relatively thicker layer of ZnS. 
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4. Conclusion 
 
In conclusion, we demonstrated the hydrothermal method for synthesizing flower-shaped 

ZnS nanocrystal.The ZnS modified GCE has been successfully utilized in the selective 
determination of glucose.In comparison to bare GCE, the ZnS modified GCE exhibited a 
superiorhigherelectrocatalytic activity towards oxidation of glucose.The proposed glucose sensor 
also exhibited a wide detection range with fast response and a lower detection limit. Moreover, the 
sensor displayed an excellent anti-interference property and stability. 
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