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Magnetic and structural properties of iron telluride glass whose composition is denoted as 
(Fe2O3)x (TeO2)1-x with (0.1≤ x ≤ 0.3) have been explored. Two different series of glass 
have been prepared using melt quenching technique with different size starting material of 
iron oxide. The amorphous nature of these glasses was confirmed by the X-ray diffraction 
spectrum while density of the obtained glasses was measured using Archimedes' principle. 
Glass stability and glass forming ability was calculated and determined using parameter 
from DTA curve. It was found that glass stability and glass forming ability of this glass 
increased as composition iron increased. Magnetic measurement was done at room 
temperature using vibrating-sample magnetometer (VSM). Results show that these glasses 
exhibit paramagnetic behavior. Owing to their amorphous structure, these glasses present 
good soft magnetic properties. 
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1. Introduction  
 
Telluride glass becomes one of the materials that have been considered in optical devices 

because of their interesting properties. Telluride glass has physical properties such as high 
refractive index, low melting temperature, high dielectric constant and high infrared transmission 
[1]. Because of these features, telluride glass has been considered candidates for optical devices 
such as optical disk, optical modulators and memory [2]. 

In recent years, iron based glass has become one of the attracted materials due to their 
potential applications related to their good soft magnetic properties, such as high saturation 
magnetization, low core loss and high permeability.  

It was reported that glasses containing transition metal ions are used as elements in 
memory switching devices, cathode material in batteries and gas sensors [3]. Glass with transition 
metal ions is vital in electronic properties; this is because of the presence of multi-valence states. 
These glasses also have potential applicability as optical fiber, tunable solid state lasers and 
efficient laser as well as in the laser spectroscopy due to their thermal and optical properties [4]. 

The addition of iron oxide in the telluride glass will improve their chemical durability, 
even when large quantities of other oxides are present. Glasses containing Fe2O3 are useful in 
numerous applications such as in electrochemical, electronic and electro-optic devices [2]. Glass 
containing iron oxides with high electrical conductivity is useful in applications as sensors in 
magneto-resistance effect [5]. Several papers have been reported on magnetic properties of glasses 
in the systems SiO2-Na2O-Fe2O3 [6], CaO–P2O5–Fe2O3 [7], BaO-Fe2O3-TeO2 [8] and Na2O-Fe2O3-
GeO2 [9]. 

The purpose of the present paper is to study the effect of size of starting material on the 
structural and magnetic properties of the Fe2O3-TeO2 glass system in different glass composition 
as well as the effect of iron oxide in the glass system.  
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Fig. 3. Variation of the density with composition of Fe2O3-TeO2 

 
IR absorption spectra of the present glasses, FT and FTN glasses are shown in Figure 4 

and 5 respectively. Their assigned band positions are reported in Table 2. From these figures, it is 
shown that there are similar absorption bands for both series, which are ~450, ~660, ~750, ~1240 
and ~1750 cm-1. This figure also shows the spectrum of pure TeO2 and Fe2O3. The spectrum of 
pure TeO2 is dominated by three bands: ~320, ~670 and ~780 cm-1. By addition of Fe2O3 
(transition metal) to this sample, the spectrum of these glasses change. The incorporation of Fe2O3 
into  telluride glass enhances the breaking of axial Te–O–Te linkages in the trigonal TeO4 
bipiramyds (tbp). This causes the appearing of TeO3 (tp) units and the formation of non-bridging 
oxygens [11]. 

The absorption band observed at ~450 cm-1, is due to the vibrations of Fe-O bonds that 
occur in FeO6 structural units which may be overlapped with the bending mode of Te-O-Te 
linkages [12] whereas the band at 660 cm-1 is due to stretching modes of the trigonal bipyramidal 
(tbp) TeO4 structural units with bridging oxygens and also to specific vibrations of Fe-O bonds in 
FeO4 units. The intensity of this band increases as an addition Fe2O3, ensured the presence of the 
FeO4 units in the structure of studied glass [13]. The absorption bands at ~750cm-1 has been 
assigned to trigonal pyramidal (tp) [TeO3] structural units. In tellurate glasses, the modifier atoms 
cause the modification of the basic structural units such as TeO4 trigonal bipyramid and TeO3 
trigonal pyramid with one of the equatorial position occupied by a lone pair of electrons. 
Introducing of iron into the glass series reinforce the breaking of axial Te-O-Te linkages in the 
TeO4 trigonal bipyramids and causes the appearance of TeO3 (tp) units [11]. The addition of Fe2O3 
content in the glass system also can accommodate an excess of oxygen through the formation of 
FeO6 structural units and the conversion of TeO4 into TeO3 structural units. The evolution of the 
structure can be explained considering the accommodation of the network with excess of oxygen 
by the conversion of some FeO4 to FeO6 structural units. 

The weak bands at ~1240 and ~1750 cm-1 is owing to the vibrations bands Te-O non 
bridging bonds of TeO3 structural units. The increase of Fe2O3 in the glass system modifies the 
vibration intensity of TeO3 and TeO4.  The existing iron ions in the telluride system may be 
attributed to the influence of lone pair electron in the glass system. This band also refers to 
hygroscopic character, which is a characteristic of the –OH bond [12]. 
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Fig. 4. FTIR Spectra of Fe2O3-TeO2 (FT) Glass system 
 

 
 

Fig. 5. FTIR Spectra of  Fe2O3-TeO2 (FTN) Glass system. 
 

Table 2: Vibration modes of different IR wave numbers 
 

Wave number (cm-1) Vibration mode 
~450 Specific vibrations of Fe–O bonds in FeO6 units [12] 

 
~660 Specific vibrations of Fe-O [13] 

bonds in FeO4 units [13] 
Stretching vibration of Te-O in TeO4 units with bridging 
oxygen [11] 
 

~750 Stretching vibration of Te-O in TeO3 units [11] 
~1240 and ~1750 cm-1 The vibration bands Te-O non bridging bonds 

in TeO3 units [11] 
 
Stretching vibration of O-H [12] 
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Fig. 7. DTA curve of FTN glass system. 
 

Table 3:  DTA parameters for (Fe2O3)x (TeO2)1-x glass system. 
 

Glass 
Series 

x Composition 
Tg ± 
0.02 
(K) 

TOC1 ± 
0.02 
(K) 

TC1 ± 
0.02 
(K) 

TC2 ± 
0.02 
(K) 

Tm1 ± 
0.02 
(K) 

Tm2 ± 
0.02 
(K) 

∆T ± 
0.02 
(K) 

S ± 
0.02 
(K) 

           

FT 
Glass 

0.10 FT 1 638.15 703.15 722.84 804.21 896.12 - 65.00 2.01 
0.15 FT 2 669.15 768.15 797.68 - 886.34 - 99.00 4.37 
0.20 FT 3 688.15 788.15 800.42 - 904.64 974.12 100.00 1.78 
0.25 FT 4 698.15 801.15 818.71 - 886.77 977.51 103.00 2.59 
0.30 FT 5 700.15 805.15 818.26 - 881.69 976.05 105.00 1.97 

           

FTN 
Glass 

0.10 FTN 1 644.70 708.15 722.49 797.08 896.07 - 63.45 1.41 
0.15 FTN 2 668.15 758.15 786.79 - 882.74 - 90.00 3.86 
0.20 FTN 3 689.15 783.15 793.43 - 898.89 975.67 94.00 1.40 
0.25 FTN 4 692.15 794.15 805.40 - 922.39 973.03 102.00 1.66 
0.30 FTN 5 696.15 801.15 807.01 - 883.53 969.85 105.00 0.88 

 
 

The magnetization (M) as a function of magnetic field (H) of Fe2O3 -TeO2 glass measured 
by a vibrating sample magnetometer (VSM) at room temperature is presented in Figure 8 and 9. It 
is observed that all FT glass series and FTN with Fe2O3 at 5-25% exhibit paramagnetic behavior 
while the glass doped with Fe2O3 30%, FTN 5 exhibit paramagnetic behavior with contribution of 
superparamagnetic [16]. The anomaly trend with increasing of Fe2O3 in FT glass is explained by 
the position of magnetic moment in the glass system, which is related with inhomogeneous of 
Fe2O3 in the glass system that probably occurred during preparation process of the glass sample as 
discussed in the previous study [17]. In FTN glass series, the glass becomes more homogenous as 
the size of starting material is small. This can be observed by variation of magnetization which 
increase as composition Fe2O3 increases.  The insert in Figure 9 is magnification of the FTN 5 
glass samples. The magnetic behavior observed is similar to that of soft magnetic materials with 
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narrow hysteresis loop and low coercivity without saturation point. The quantity of the magnetic 
phase present in the glass sample is assumed to be small because it cannot be detected by XRD.  
Thus, magnetic measurements represent a very sensitive means of detecting such transformations 
which cannot be detected by other physical measurements.  

 
Fig. 8. Magnetic Curve of Fe2O3-TeO2 (FT) at varied composition of Iron Oxide. 

 

 
Fig. 9. Magnetic Curve of Fe2O3-TeO2 (FT) at varied composition of Iron Oxide 

 
 
4. Conclusions  
 
Binary iron telluride glass system was synthesized by using two different starting material 

size of Fe2O3.   This glass shows improvement in glass stability and glass forming ability with 
increase of iron oxide. Glass with nano material sized has been found able to improve the soft 
magnetic properties of Fe2O3-TeO2 and glass iron 30% iron shows paramagnetic with contribution 
of superparamagnetic behavior.  
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