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In this paper, we investigate the generalization of some equilibrium properties of the 

Coulomb glass model to characterize the thermal behavior of glassy chalcogenides out of 

equilibrium. Concretely, we focus on the minimum of the one-particle density of states 

and the fluctuation-dissipation theorem. The former can be employed as a good 

thermometer out of equilibrium while the latter reveals the existence of more than one 

temperature in glassy chalcogenides. The approaches applied in this work are suitable to 

explore the nature as well as the thermal properties of other glassy systems, such as spin 

glasses. 
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1. Introduction 
 

The extension of thermal equilibrium properties to non equilibrium is a fundamental topic 

to investigate the nature of glassy systems in physics. In fact, in the vitreous state, even the 

concept of temperature is not well defined [1]. Since statistical physics is fundamentally applied to 

systems in equilibrium, it is required to generalize some concepts inherent to this discipline to the 

studies out of equilibrium, in order to achieve a deep comprehension of this kind of materials. 

Recently, El-Hakim and Morsy have shown evidences of the relationship between 

amorphous non-oxide chalcogenides and the Coulomb glass model (also known as the electron 

glass model) [2]. In fact, at very low temperatures, glassy non-oxide chalcogenides behave similar 

to their oxide counterparts, and they exhibit some features common to most glassy systems [3]: 

memory effects [4], aging [5,6] or slow relaxation rates [7], among others [8]. 

In this fashion, it is possible to generalize some equilibrium properties of Coulomb glasses 

in order to characterize the thermal behavior of glassy non-oxide chalcogenides. The key 

ingredient is the analysis of the deviations from the ideal equilibrium expressions when the system 

is placed out of equilibrium. Numerical simulations appear as a good approach to perform the 

study, given the complexity of the system. Concretely, in our work we employ Monte Carlo 

simulations. 

In the present work we will focus on the analysis of the so called one-particle properties 

in equilibrium of Coulomb glasses. Among them, we will discuss two important phenomena: the 

dependence on the temperature of the minimum of the one-particle density of states (DOS) and the 

fluctuation-dissipation theorem (FDT). The first one will reveal that the minimum of the DOS is a 
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good thermometer to characterize glassy systems, both in an out of equilibrium, and can be 

employed with experimental purposes. The second one will reveal the existence of more than one 

temperature in glassy chalcogenides, by means of the deviations from the ideal FDT curve. 

The Coulomb glass Hamiltonian, which describes the system, is given by the expression 

[5, 9] 

                                 𝐻 = ∑ 𝜙𝑖𝑛𝑖

𝑖

+ ∑
(𝑛𝑖 − 𝐾)(𝑛𝑗 − 𝐾)

𝑟𝑖𝑗
𝑖<𝑗

                                      (1) 

 
where 𝑛𝑖 is the occupancy number of site i, which can either be 0 or 1, and 𝑟𝑖𝑗 is the distance 

between sites i and j. Variable 𝜙𝑖  is the so-called random site potential, which represents the 

structural disorder of the sample, and K is the compensation, which ensures the electrical neutrality 

of the system. For the study of conductivity, which we also discuss in this paper, the Hamiltonian 

has and added term, and is equal to: 

 

                                 𝐻 = ∑ 𝜙𝑖

𝑖

𝑛𝑖 + ∑
(𝑛𝑖 − 𝐾)(𝑛𝑗 − 𝐾)

𝑟𝑖𝑗
𝑖<𝑗

+ ∑ 𝐸𝑥𝑖

𝑖

                            (2) 

 

In this expression, E is the applied electric field (pointing through X direction) and xi is the 

horizontal component of the position vector of the i-th impurity. The product of both magnitudes 

has dimensions of energy. 

 

1.1 Minimum of the one-particle density of states 

 

The one-particle density of states of a physical system is defined as the number of 

individual energy levels per unit of energy and volume. We usually denote this function as 𝑔(𝜀), 

where 𝜀 is, in general, a generic variable that represents the energy of the state of one particle. 

Function 𝑔(𝜀) is well defined for non interacting systems, where individual energy levels are well 

determined. For a quantum system of non interacting fermions in equilibrium, with a random 

disorder within an interval of width W, the DOS takes a constant value over the entire range of 

energies [10]. In this case, 𝜀𝑖 is the i-th individual energy level. This situation is equivalent to the 

Coulomb glass model without the interaction term, second addend in Hamiltonian defined in Eq. 

(1), with the change 𝜀𝑖 → 𝜙𝑖. If we introduce a new electron in the system in a generic site indexed 

by k, the change in the Hamiltonian is just the potential 𝜙𝑘. 

For the interacting system the argument is similar. In this case, we define the site energy 

as [3,9] 

𝜖𝑖 = 𝜙𝑖 + ∑
(𝑛𝑗 − 𝐾)

𝑟𝑖𝑗
𝑗≠𝑖

 

 

The definitions of the variables are given above. If we now introduce a new electron in the 

system, it is easy to calculate that the change in the Hamiltonian is just the site energy of the new 

particle added [9]. In analogy with the non interacting situation, for the interacting Coulomb glass 

model we can identify the variable 𝜀𝑖 of the DOS with 𝜖𝑖.  

Due the combined effect of disorder and interaction the Coulomb glasses exhibit 

frustration, and the DOS presents a gap, following the next equation at zero temperature [10] 

 

𝑔(𝜖) = 𝑘|𝜖 − 𝜖F|𝑑−1 

 

In this expression, 𝜖F is the site energy of the Fermi level, d is the dimension of the system 

and k is a constant. Numerical simulations at T = 0 verify this dependence, in both two and three 

dimensions [11]. For 𝑇 ≠ 0, the shape of the DOS is qualitatively equal, but it presents a minimum 

greater than zero, approximately constant in a small region around the Fermi Level [12]. In 
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numerical simulations it is usual to calculate the DOS with respect to the Fermi level, that is, the 

function 𝑔(𝜖 − 𝜖F). 

 

1.2 Fluctuation-dissipation theorem 

 

In equilibrium, the FDT quantifies the equivalence of the spontaneous fluctuations of a 

system in equilibrium with the evolution through such state when the system is slightly displaced 

from it [13]. It is necessary to apply a small perturbation to the system through an external field, in 

order to place the system in a regime of linear response. This fact implies that the response 

function does not depend on the applied field. To model the system, we suppose that the 

Hamiltonian of Coulomb glasses (Eq. 1) can be perturbed in a quantity ∆𝐻 through the application 

of an external field f: 

∆𝐻 = −𝑓𝑋 
 

where X represents our observable, conjugated variable of f, so that the product of  both 

magnitudes has dimensions of energy.  

The FDT presents a simple relationship between the dynamical response of the system and 

the correlation in equilibrium [13]: 

 

〈∆𝑋(𝑡)〉 = 〈𝑋(𝑡)〉 − 𝑋0 = −𝛽𝑓𝐶(𝑡) 
 

In this expression, 〈𝑋(𝑡)〉  is the function total response of the system, averaged over 

different samples of the system under consideration, while  𝑋0  is the value of variable X in 

equilibrium. So, 〈∆𝑋(𝑡)〉  is the variation in the response of the system. Function 𝐶(𝑡)  is the 

correlation function associated to variable X, and 𝛽 is equal to 1/𝑘B𝑇, where 𝑘B is Boltzman’s 

constant and T the temperature. The graphical representation of  〈∆𝑋(𝑡)〉  versus 𝐶(𝑡)  in 

equilibrium shows a straight line of slope – 𝛽𝑓, from which we can easily determine the value of 

T. 

In 1982, Sompolinsky and Zippelius revealed the existence of a new temperature in spin 

glasses, besides of that of the phonon bath (room) T, which is commonly known in the literature as 

effective temperature (𝑇eff) [14]. Their theoretical study showed for the first time the violation of 

the FDT in glassy systems out of equilibrium. Over the years, the extension of the FDT to non-

equilibrium dynamics became a main objective in the study of these materials. Works from 

Cugliandolo et al. [15] and Garriga and Ritort [16] have succeeded in extending theoretically such 

theorem for characterizing the thermodynamics of spin glasses in both relaxation and stationary 

regimes. The generalization to Coulomb glasses is immediate, as long as the model is mappable to 

a spin glass model with long range interaction and spin interchange [3]. Thus, the generalization of 

the FDT can be employed as an efficient tool via numerical simulations to study the non-

equilibrium behavior in glassy chalcogenides. Its graphical representation show deviations from 

the ideal straight line in equilibrium revealing, in most cases, different regimes in which some key 

aspects of the glassy state can be directly determined, such as the effective temperature.  

It is possible to generalize the FDT even when the system is placed out of equilibrium. 

The conditions are: (i) the system presents a regime characterized by small thermodynamic fluxes 

and (ii) the application of the external field, f, perturbs as less as possible this situation. 

In our simulations, we have chosen the following perturbation, Δ𝐻, for the Hamiltonian H: 

 

∆𝐻 = − ∑ 𝑓𝑛𝑖𝜙′𝑖 = −𝑓𝑋

𝑖

 

where 𝜙′𝑖 is a new random site potential, totally uncorrelated with variables 𝑛𝑖. The magnitude of 

the external field is f. We will apply this perturbation to the Hamiltonian described in Eq. (1) from 

a time 𝑡w , called the waiting time, and follow the relaxation of the system via Monte Carlo 

simulations. Out of equilibrium the system presents slow relaxing rates and is history-dependent, 

so the total response and the correlation function will depend on both 𝑡w (fixed) and 𝑡 (variable). 

The key ingredient to extend the FDT to non-equilibrium is to obtain a graphical representation of   



230 

 

〈∆𝑋(𝑡, 𝑡w)〉  versus its associated correlation function, 𝐶(𝑡, 𝑡w) . The deviation from the ideal 

behavior in equilibrium will be depicted from the existence of two different and well differentiated 

slopes, this time proportional to −1/𝑇 and −1/𝑇eff, respectively, as we will show. 

 
 
2. Mathematical model and numerical details 
 

We investigate the equilibrium properties of semiconductor samples doped with impurities 

randomly placed, in the regime of strong localization and very low temperatures. This fact is 

equivalent to assume that the system behaves as a dielectric material and transitions happen by 

electrons jumping between impurities, in the regime of variable range hopping [9]. We consider 

that the position of the electron matches that of the impurity, since the value of the localization 

length, 𝜉, is considered very small [3]. We study squared samples of lateral dimension L and 

implement periodic boundary conditions.  

The units we employ in the numerical simulations are the following: 𝑙0 = 𝐿/√𝑁 is the 

length unit and 1/𝑙0 the energy and temperature unit, if the electron charge, e, and Boltzmann 

constant, 𝑘B, are taken as the unit. For this choice, our range of temperatures is [0.001, 0.05]. We 

consider systems ranging from 500 to 4000 sites, with a minimum distance between them of 0.2. 

The range of disorder is W = 2 and the localization length, 𝜉 = 1. When any of these parameters 

takes another value, it will be properly noted. The characteristic electron-phonon time, 𝜏0, will be 

employed as the unit of time. We also choose K = 1/2, and consider that each particle only 

interacts with its nearest image. Therefore, we do not perform Ewald summation. 

In order to obtain a wide range of temperatures we employ two kinds of algorithms of 

simulation. For the lowest temperatures we employ the lowest energy configurations of the 

system, which can be determined by specific optimization algorithms [17,18]. From these 

configurations we can calculate the magnitudes in equilibrium by applying the standards of 

statistical mechanics. For higher temperatures, we use Monte Carlo simulations by means of the 

Tsigankov et al. hybrid algorithm [19], at high enough temperatures so the system quickly reaches 

the thermal equilibrium. The simulations from the lowest energy configurations are valid in the 

range of very low temperatures, while those obtained by the Monte Carlo method are inefficient in 

the same region, since the system does not reaches the thermal equilibrium easily. However, the 

latter method works very well at higher values of T. The employment of both algorithms 

simultaneously allows us to study a wider range of temperatures. 

For simulations using the lowest energy configurations, a statistical average has been 

carried out over 1000 samples, i. e., different arrangements of sites. For the Monte Carlo 

algorithm, the total number of simulations, 𝑛tot, is defined as 𝑛tot = 𝑛s ∙  𝑛occ, where 𝑛s is the 

number of samples and 𝑛occ is the number of initial occupations of electrons per sample. In this 

work, we have set 𝑛s = 100 and 𝑛occ ranging between 10 and 50.  

 

 
3. Results and discussion 
 

3.1 Minimum of the one-particle density of states 

 

A good thermometer in equilibrium for Coulomb glasses is the minimum of the DOS of 

one particle, that we will denote from now as 𝑔(𝜖 − 𝜖F = 0) ≡ 𝑔0 . This magnitude can be 

determined experimentally, for example, through experiments of conduction by tunneling effect. 

Massey and Lee observed and quantitatively characterized in 3D the Coulomb gap in the density 

of states for the doped semiconductor Si:B, by measuring the tunneling conductance as a function 

of the bias voltage [20]. They obtained a pure regime of tunneling conductivity, and determined 

the value of g0 from the experimental data obtained. 

First, we can introduce an intuitive argument to justify that that g0 depends linearly on 

temperature in two-dimensional systems in equilibrium, based on the qualitative information 

provided by Figure 1. Here, the straight (red) and curved (black) continuous lines represent the 
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shape of the DOS at zero and non-zero temperature, respectively. The vertical dashed lines delimit 

the width imposed by the thermal energy, which is proportional to T. At zero temperature the 

minimum of the DOS is strictly zero. The effect of temperature is traduced in the increasing of the 

thermal energy of the particles in a factor proportional to T, so they can move in a wider zone on 

the horizontal axis, which presents a width of the order of that thermal energy. Therefore, from the 

figure we can infer that the value of g0 is similar to 𝑔(𝜖 − 𝜖F = 𝑇/2) at zero temperature. Besides, 

since the shape of the inner zone of the Coulomb gap in two dimensions is linear [3], we can 

conclude that g0 presents a linear behavior in terms of T. Following the same argument, in the 

three-dimensional case, g0 should present a quadratic dependence on T, since the shape of the gap 

is parabolic [3]. 

 

 
Fig. 1. Qualitative shape of the DOS at zero (red straight lines) and non-zero 

temperatures (black continuous line). Discontinuous vertical lines delimit 

 the increase of thermal energy per particle by the effect of the temperature. 

 

In our simulations we have calculated the dependence of g0 on the temperature in both two 

and three dimensions, in equilibrium, for systems of size N = 2000. The surrounding region of g0 is 

approximately constant over a small range of energies centered at zero [9]. Thus, we determine the 

value of g0 by averaging the density of states in that interval. In each of the following figures the 

errors are of the order of the spot size, so they have been disregarded in the graphical 

representation. However, all calculations have been made taking them into account. In Figure 2 it 

is shown the dependence of g0 on T in 2D. We note that this dependence is fairly linear. In order to 

check it, suppose first that g0 follows a power law of the type 𝑇𝛾. If we plot the variable ln (𝑔0) 

versus ln 𝑇 and we perform a linear fit of the data, we obtain 𝛾 from the slope of the calculation. In 

the detail of Figure 2 we represent g0 as a function of T, in double logarithmic scale. The slope of 

the line is 𝑚 = 1.011 ± 0.012, which reveals that the linear dependence between magnitudes is 

quite good. In the main graph of Figure 2, the linear fit of the data gives the result 

 

𝑔0 = (−5.3 ± 4.0) × 10−4 + (0.72 ± 0.01)𝑇 
 

The calculation is analogous for three-dimensional systems. Fig. 3 represents g0 versus T 

in double logarithmic scale, this time for the 3D case. The slope of the linear fit has a value of 

1.90 ± 0.10 , which shows a quadratic dependence in very good approximation, as expected. 
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Fig. 2. Dependence of the minimum of the DOS, g0, on T for a two-dimensional system of 

size 2000, in equilibrium. The inset represents the same data in double logarithmic scale. 

Within it, the slope of the linear fit is equal to 1.01 ± 0.01, which confirms the expected 

linear dependence between both magnitudes. 

 

 
Fig. 3. Dependence of the minimum of the DOS, g0, on T for a three-dimensional system of 

size 2000 in equilibrium, in double logarithmic scale. The slope of the linear fit is 1.90 ±
0.10, which confirms the quadratic dependence expected between both magnitudes. 

 

 

The minimum of the density of states remains a valuable thermometer when the Coulomb 

glass is placed out of equilibrium, where it exhibits frustration: the inability of a physical system to 

minimize the energy corresponding to all their interactions. This fact generates the presence of 

significant effects in these materials, glassy behavior. The non-equilibrium dynamics of Coulomb 

glasses has been characterized by the employment of two temperatures: the temperature of the 

phonon bath (room), and an effective temperature, Teff, greater than the previous one, which tends 

to it as the system approaches equilibrium, as commented in the introduction. In Coulomb glasses, 

the room temperature and the effective temperature correspond, respectively, to the degrees of 

freedom of the system that equilibrate slowly and rapidly [9, 21]. 

In this fashion, some of the authors found in a previous work that, in the relaxation process 

of Coulomb glasses, g0 also exhibit a linear behavior, this time in terms of Teff [21]. The results 

were obtained by reproducing a quench experiment at very low temperature by means of Monte 

Carlo simulations. The calculations were performed for several sizes and relaxation times, and the 

results revealed that de dependence of g0 on Teff is linear and scalable for all sizes: 

 

𝑔0 = (0.9 ± 0.2)𝑇eff + (−0.011 ± 0.003) 
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Thus, as a natural extension of the equilibrium properties, g0 represents an appropriate 

thermometer to measure Teff experimentally, for example by tunneling effect experiments. 

We here focus on another interesting and novel kind of study out of equilibrium, in which 

one can employ g0 as a good thermometer: the conductivity of Coulomb glasses in a stationary 

state placed out of the linear regime, achieved by applying an electric field outside the linear 

regime. This field is usually applied pointing through one particular direction of the sample. The 

Hamiltonian which describes the system in this situation was defined in Eq. (2). The effect of a 

strong electric field produces a partial fill of the Coulomb gap, placing the system in a stationary 

state out of equilibrium, outside of the linear regime. This fact results in the presence of an 

effective temperature which depends on the applied electric field [22]. Since there will not be 

return to the equilibrium state, the effective temperature will not tend to that of the phonon bath 

along time. In fact, it will remain constant, on average. Numerical simulations of conductivity 

outside the linear regime are still scarce, and the extension of concepts inherent to equilibrium can 

be regarded as useful numerical tools to characterize the behavior of Coulomb glasses out of it.  

To check the dependence of g0 on Teff we have performed dynamic Monte Carlo 

simulations, in which we determine the value of the effective temperature for the application of 

different electric fields outside the linear regime. As done in previous dynamic simulations, we 

have implemented periodic boundary conditions in the samples. The way to calculate the effective 

temperature is the same employed in previous studies of the authors [21, 22], and it is obtained 

from the determination of the density of states of a particle corresponding to the degrees of 

freedom that equilibrate slowly.  

In our new simulations we calculate the effective temperature for several values of E. 

Operationally, the conductivity starts to deviate from the linear behavior when the electric field is 

greater than T/20. Looking at the minimum of the DOS at the Fermi level for the stationary case 

obtained from the results, we observe that it is also linearly dependent on the effective 

temperature, as in the case of pure relaxation. The behavior is also similar to that found in 

equilibrium (see Figures 2 and 3). The hypothesis that this is a general result due to the linearity of 

the Coulomb gap is strengthened from the results presented. In Figure 4 we present data of g0 as a 

function of Teff for a 2D system of size 2000 (blue dots) at T = 0.05, although the results are similar 

for other sizes. Errors have been computed assuming that the histogram of the density of states of 

one particle is a Poisson distribution [9], and are of the order of the dot size. From the linear fit 

(blue solid line) we obtain a slope equal to 0.60 ± 0.01. This value is similar to that found in 

equilibrium calculations in Fig. 2. Therefore, we have added to Figure 4 the representation of g0 as 

a function of T in equilibrium (black squares). The dashed line represents the extrapolation of the 

linear fit of the equilibrium data. The results presented confirm the validity of g0 as a thermometer 

for measuring Teff in multiple situations and so, the usefulness of the extension of equilibrium 

properties to non equilibrium dynamics. 

 

 
Fig. 4. Dependence of the minimum of the DOS, g0, on 𝑇eff  for a 2D system of size 2000 

(blue dots). The slope of the linear fit is 0.60 ± 0.01. The black squares represent the 

dependence of g0  on T for the same system in equilibrium (same data that in Figure 2). 
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3.2 Fluctuation-dissipation theorem 

 

In order to obtain an extension of the FDT we have performed two kinds of simulations 

for the same system. Firstly, we deal with the case of zero field amplitude, f = 0, and measure the 

electronic correlation associated to variable X as a function of two times, from time tw. The 

expression for the correlation thus is [9]  

𝐶(𝑡, 𝑡w) =
𝑊2

12
〈∑ 𝑛𝑖

𝑖

(𝑡)𝑛𝑖(𝑡w)〉 

 On the other hand, we must perform the simulations for the case 𝑓 ≠ 0 and measure the 

total response of the system to the applied perturbation, 〈∆𝑋(𝑡, 𝑡w)〉, once the field is activated in 

tw, which presumably will be done immediately. Our plots are based on the representation of  

〈∆𝑋(𝑡, 𝑡w)〉 versus 𝐶(𝑡, 𝑡w) normalized to 𝐶(𝑡w, 𝑡w) (from now, C0), when the field is connected. 

It is mandatory to take control over parameter f, which magnitude has to be small enough to 

maintain the linear response regime, but not so much in order to get reasonable statistics. A good 

test for it is to check that the degrees of freedom of the system that quickly equilibrate are 

thermalized at the room temperature T. This fact implies that those data fall into the ideal straight 

line which represents the FDT in equilibrium. We stated from our simulations that values of f 

higher than 0.008 lead to deviations from the ideal behavior and place the system in the non-linear 

regime. Below 0.008, we need too much statistics to show reasonable results. So, we have selected 

f = 0.008 in all our simulations, which remains valid for all sample sizes. 

 Under these circumstances, we represent the magnitude 〈∆𝑋(𝑡, 𝑡w)〉/𝐶0, divided by 𝛽𝑓, 

versus 𝐶(𝑡, 𝑡w)/𝐶0, for several values of tw. In this fashion, the line associated to the FDT in 

equilibrium, which we will use as a visual guide, has a slope equal to -1 [9]. In Figure 5 we 

represent the previous variables for a system of size 1000 in relaxation from a quench at T=0.02 

and a waiting time 𝑡w = 104. The total simulation continues until 𝑡 = 105. The continuous line 

represents the ideal FDT in equilibrium (slope -1). From the graphical representation (blue dots) 

we can observe two differentiated behaviors, characterized by two different slopes. The right side 

of the plot shows a behavior similar to that of equilibrium, where the data fall into the solid line. 

This fact reveals that they are degrees of freedom in the system that quickly equilibrate at T. By 

contrast, the left side of the plot presents another slope, which is equal to – 𝑇/𝑇eff, showing the 

presence of slow relaxation degrees of freedom in the system, thermalized at 𝑇eff.  

 This is the main ingredient of the extension of the FDT to non-equilibrium: the ability of 

showing different timescales for the glassy systems, characterized by slow or fast degrees of 

freedom. 

 The information contained in Figure 5 is consistent with the determination of  𝑇eff by 

means of other methods. Concretely, we have employed the site occupation method [9, 21, 22], 

that some of the authors developed in previous publications, to compare the consistency of the 

FDT. From it, we have calculated 𝑇eff at time tw. The results are also showed in Figure 5, where 

we have plotted a dotted straight line of slope – 𝑇/𝑇eff. It can be directly depicted from the graph 

that both methods offer the same value of the effective temperature. 

 



235 

 

 
Fig. 5. Fluctuation-dissipation out of equilibrium for a system of size 1000 quenched from 

T=0.02. The waiting time is 𝑡w = 104 , and the total simulation time is 𝑡 = 105 . The 

straight continuous line shows the ideal behavior of  the  FDT  in  equilibrium,  with slope  

equal to -1. The dashed line presents a slope – 𝑇/𝑇eff. 

 

 

 In general, the study of the FDT needs too much statistics to show clear results, without 

noise. However, it is a good tool to identify the different regimes of relaxation inside the system, 

and can be particularly useful for stationary regimes, when 𝑇eff does not vary along time. Besides, 

the FDT is an excellent complement to other procedures to check the validity of the calculus of the 

effective temperature. 

 

 

4. Conclussions 
 

 In this work we show the usefulness of the generalization of concepts inherent to 

equilibrium to study the non equilibrium dynamics in glassy chalcogenides. In particular, we point 

out the importance of the minimum of the one-particle density of states, whose characterization 

may have experimental implications.  

The extension of equilibrium properties to non equilibrium is still an open field. In 

general, other concepts inherent to equilibrium can be generalized in order to study the 

thermodynamics of glassy chalcogenides. For example, the density of excitations of one particle. 

Other interesting phenomena which can be studied are related to the many-particles properties, 

such as the dependence of the total energy of the system on the temperature, the many-particle 

density of states or the absorbed and emitted power, topics in which we are currently working. 

This kind of studies may lead to a deeper comprehension of the glassy state, whose complete 

understanding is still far from being reached.   
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