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In aiming to explain the establishment, maintenance and stability of methylation pattern in 
gene body of Arabidopsis we propose here a theoretical framework for understanding how 
the methylated and unmethylated states of cytosine residues are maintained and 
transmitted during DNA replication. Routed in statistical mechanics, the framework built 
herein is used to explore minimal models of epigenetic inheritance and identify the 
necessary conditions for stability of methylated/unmethylated states of cytosine over 
rounds of DNA replication. The models are flexible enough to allow adding new 
biological concepts and information.  
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1. Introduction 
 
DNA methylation is a dynamic epigenetic process that refers to the enzymatic transfer of a 

methyl group to the specific nucleotides within the DNA sequence. In eukaryotes, this 
modification or marks affects almost exclusively cytosines [1]. DNA methylation is readily 
detected in plants and mammals, where it is critical for normal development and genome stability. 
Interestingly, plants seem more prone to the inheritance of DNA methylation defects than 
mammals [2,3]. 

Due to a near-complete genome sequence annotated to very high standards, a 
comprehensive set of genomics tools and powerful genetics, the flowering plant Arabidopsis has 
rapidly become a prime model for the study of DNA methylation and its inheritance patterns in 
higher eukaryotes. In this work we will refer at Arabidopsis as a model organism although the 
framework in which we work it can be applied to DNA methylation in other organisms as well. 

In the Arabidopsis, methylation of cytosine has been detected on genebody, gene 
promoters and repeat elements (transposable elements). If the role of methylation in the context of 
repeat elements is considered to be of defense against invasive DNA and on gene promoters of 
silencing the gene, the role of methylation on gene body is not yet clear. On gene body 
methylation of cytosine is restricted to CG sites, [4,5] by difference with the repeat elements or 
gene promoters case where methylation is sequence dependent and can be found also on CHG and 
CHH sites (where H can be any of the four nucleotides: A,T,C,G) [6,7]. The relative prevalence of 
DNA methylation in each sequence context throughout the genome was assessed, revealing that 
55% were in CG context, while 23% and 22% were in the CHG and CHH contexts, respectively 
[4,5,8,9]. 

Gene body methylation occurs on about a third of all genes, and the segenes tend to be 
highly and ubiquitously expressed in different Arabidopsis tissues. [10,11]. 
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One of the defining properties of epigenetic phenomena is its stability, the ability of the 
cell to maintain its epigenetic state stable through many cell divisions. The density of the marks, 
(methylated states) responsible for the epigenetic effects, is changed during DNA replication by 
introducing newly synthesized DNA indicating that these heritable states must be robust against 
significant perturbations in there concentration. In the same time, mechanisms of DNA 
methylation involve enzymes that can act on more than one nucleotide in its neighborhood. This 
non-locality of action opens the possibility of interesting collective aspects that have a role in 
maintaining the stability of epigenetic states.  

We approach the problem by using methods that traditionally are used in statistical 
mechanics and dynamical systems. In my previous work on epigenetic processes [12], I was 
mostly concerned with understanding the stability of histone modifications, rather than DNA 
methylation. Given that DNA methylation is another important epigenetic mark critical in 
development and genome stability, in this work we wish to explore the stability of DNA 
methylation pattern across multiple generations and focus on understanding DNA methylation in a 
first approximation in the context of gene body. 

The aim is to explore the properties of a minimal model of epigenetic silencing in order to 
identify the necessary conditions for stability of cytosine states that correspond to distinct 
epigenetic phenotypes i.e. methylated/un-methylated states. The model is based on the current 
understanding of DNA methylation in gene body Arabidopsis, with particular emphasis on the 
interplay between the mechanisms that enable the establishment and maintenance of this 
modifications [13]. 

In section 2 we will present the general framework of the model. In order to make the 
present discussion self-contained we will introduce some well known aspects of the methods 
commonly used in statistical physics (see also [12]). In section 3 we will apply the framework and 
methods presented in previous section to the context of gene body methylation in Arabidopsis and 
present the results. In section 4 we will discuss some aspects of the model and in section 5 we will 
draw the conclusions and present some posible future directions of the model. 

 
2. Methods and general framework of the model 
 
We consider a 1D lattice of size L whose sites correspond to nucleotides/cytosines ordered 

along the length of the DNA. The nucleotide corresponding to site i, can be in several states, 
corresponding to particular situation that we are interested in. These states are labeled by s = 
1,...,N. The rates of transition at site i from state s′ to state s, namely  

ܴ௦௦ᇲ  [s1,…, si-1,s′, si+1,…, sL], depends not only on the local state but also on the states of 
all the neighbors within a range l. In practice, this dependency arises because particular 
modifications of a site leads to recruitment of particular enzymes that could affect modification 
rates of the neighboring nucleotides. The master equation describing the time evolution of the 
probability distribution P[s1,…, sL; t] is given by: 

 

ௗ
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ܲሾݏଵ, … , ;ݏ ሿݐ ൌ ∑ ∑ ቌ

ܴ௦௦ᇲሾݏଵ, … , ,ିଵݏ ݏ
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െܴ௦ᇲ௦ሾݏଵ, … , ,ିଵݏ ,ݏ ,ାଵݏ … , ,ଵݏሿܲሾݏ … , ,ିଵݏ ,ݏ ,ାଵݏ … , ;ݏ ሿݐ
ቍ௦ᇱ


ୀଵ                    

                          (1) 
 

for times between DNA replication. At the point of DNA duplication, a novo strand is formed. 
This will have as consequences that the fraction of methylated sites right after DNA replication 
will be diluted. Taking in consideration that right after DNA replication we have a hemimethylated 
DNA, we represent that in the evolution of probability distribution. Actually for the gene body 
case, density of methylated sites will be halved, i.e will be half the fraction of methylated sites that 
were before DNA replication. In this process we assume that DNA duplication happens 
instantaneously (in reality, fast compared to the time between two duplication events). Fig. 1 
provides a schematic representation of the model and its dynamics.  
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To solve the master equation (1) analytically for the long time behavior of P[s1,…, sL; t] is 
generally an impossible task. One, therefore, has to resort to some sort of approximation. One such 
approximation often used successfully in statistical mechanics is the “mean field” approximation 
[14]. In this approach one approximates P[s1,…, sL; t] by a factorized form Πi pi[si; t]. 

 
 

Fig. 1. Methylation on CG sequence is symetrically on both strands; right after DNA 
replication at T+ we have a hemimethylated DNA and density of methylated sites is 
halved; L - length  of  the  lattice;  l - range  of  cooperative  behavior;  T- periodic  time  
to  DNA  
                                                                replication. 

 
 

Using this approximation one derives that the evolution equation for  
pi[si; t] is going to be: 

ௗ

ௗ௧
;ݏሾ ሿݐ ൌ ∑ ൫ തܴ௦௦ᇲሾݏ

ᇱ; ሿݐ െ	 തܴ௦ᇲ௦ሾݏ; ሿ൯௦ᇲݐ         (2) 

 
where the definition of the average rates തܴ௦௦ᇲ  is:     
 

തܴ
௦௦ᇲ ൌ ∑ ܴ௦௦ᇲሾݏଵ, … , ;ଵݏଵሾሿݏ ሿݐ ;ିଵݏିଵሾ… ;ାଵݏାଵሾሿݐ ሿݐ ;ݏሾ… ሿ௦భ,…,௦షభ,௦,௦శభ,…,௦ಽݐ   (3) 

 
Notice that these averaged rates തܴ௦௦ᇲ ′ are polynomials in pi[s; t] making eq.(2) a nonlinear 

equation. 
In the mean field analysis of all the models discussed in this work, we will ignore the 

spatial variation of ‘marks’ and replace them by average concentrations corresponding to an entire 
region of DNA, namely pi[si; t] = p[si; t]. We thereby focus on regions of DNA with one epigenetic 
fate and be concerned with ’uniform’ states. The equations for the variables p[s; t] are: 

 

    
ௗ

ௗ௧
;ݏሾ ሿݐ ൌ ∑ ሺ തܴ௦௦ᇲሾݏ

ᇱ; ሿݐ െ തܴ
௦ᇲ௦ሾݏ; ሿሻ௦ᇲݐ                           (4) 

 
where  തܴ௦௦ᇲ  = തܴ௦௦ᇲ, is given by Eq. 2. These are independent of i because the rules of transitions 
are translation invariant and we ignore boundary effects. On incorporating recruitment and 
cooperative behavior multiple neighboring sites of a site influence the probability of the state at 
that site, therefore, the transition rates are dependent on what happens on neighboring sites. We 
suppose that the rates ܴ௦௦ᇲ[s1,…,si−1,s′, si+1,…, sL] depend only on the fraction of sites in a given 
state in the neighborhood of i within separation l, where 1 << l (we could still have l << L to be 
physically meaningful). We can group then L sites into L/l clusters of l sites each, i.e. coarse-
graining the system. We redefine the probabilities pi [si ,t] of state si at site i ∈ [1,L] by the 
averaged probability ̅j[s; t] of state S at any cluster j ∈ [1; L/l], where formally 
 

≡j[S, t]̅                  
ଵ


∑ ,	ݏሾ ሿݐ

ୀିାଵ                                          (5) 
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Moreover we can assume that the averaged probabilities are approximately site 
independent. The new states S are not binary corresponding to the presence or absence of marks 
but a discrete spectrum of states that can be approximated by the concentration of marks in a 
cluster. This mean-field equivalence of the local probability of a binary state at a site to the 
probability density (or normalized concentration) of states in a ‘coarse-grained cluster’ is going to 
be exploited in the rest of the work implicitly in writing down mean-field differential equations for 
the dynamics of the system. We will not introduce in the rest of the work the formal redefinitions 
of probabilities done above. The mean field approximation, turns out, a posteriori, to be justified 
and quite effective in many cases [14,15]. This method as shown is based on averaged quantities 
that coarse -grain the system and by neglecting the spontaneous fluctuations in the concentration 
of the states, predicts long range order. 

We will study, analytically and computationally the stochastic model of epigenetic 
inheritance formulated above for a particular choice of states and rules of state transitions proper 
for describing DNA methylation in gene body Arabidopsis. In the next section the discussion will 
be on a concrete case of DNA methylation in gene body Arabidopsis. Here we will show that some 
restrictions in the dynamics (transition rates) and some addtional constraints are required for the 
recovery of the epigenetic marks to take place. 
 

3. Results: Modeling gene body methylation in Arabidopsis 
 
Abiding by our goal of identifying minimal models of epigenetic DNA methylation, we 

develop in this section a two-state model for studying stable epigenetic marks and understanding 
gene body methylation. In Arabidopsis gene body, methylation is restricted almost exclusively to 
CG sites and seams to be associated with expression rather then silencing [4,5]. Following the 
understanding of Colot group et. al.[16] for DNA methylation in Arabidopsis we are considering 
that the process of methylation takes places in two critical steps. First step concerns establishment 
of DNA methylation pattern and its associated mechanisms; while the second concerns 
maintenance of this modification within and between generations. Based on the general framework 
presented in previous section we consider the string of nucleotides as a 1 dimensional finite lattice 
that approximate the DNA. As experimentally has been established that methylation status is 
influenced by nearby cytosine [17] we have to take into account this fact in generating the model 
of dynamic evolution of the system. Thus, in our model, the rates of transition at site k depends of 
the states of all the neighbors cytosine within a range l=n, property called cooperativity and of an 
inherent constant defined by the enzymes involved in the establishing mechanism of DNA 
methylation. The inherent constant defines the property of a cytosine to become methylated or de-
methylated independently of its neighbors. This can be considered a de novo methylation where a 
cytosine is methylated /de-methylated with a constant rate due to enzymatic machinery. By 
contrast the cooperative term defines the dependency of the state of the cytosine at site k of the 
methylated status of its n neighbors. Such a term describes the local modulation of the enzymatic 
machinery by raising or lowering the local concentration of enzymes at a given place in the lattice. 
In this sense the dynamics that determine the establishment of DNA methylation, the transition 
rate at site k is defined as bellow by the two components, see fig. 2: the component that defines the 
inherent property of cytosine to become methylated or un-methylated independently of its 
neighbors that we call INHERENT rate and COOPERATIVITY component which is determined 
and therefore depends by the state of the n neighbors that surround the cytosine. 
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Fig. 2: transition rates at site k; m-methylated state; u-unmethylated state; rk is the rate of 
unmethylated cytosine at site k to become methylated; r′k the rate of methylated cytosine at  
                                               site k to become unmethylated .  

 
 
 

Mathematically all of above are written as following:  

rk = ฎߙ
୧୬୦ୣ୰ୣ୬୲
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where: nk = ∑ ሻݐሺߟ

ା
ୀି  depends of n, number of neighbors; α is the inherent rate constant of 

cytosines to be methylated; β is a proportionality constant; η is methylated state and (1 − η) - de-
methylated state; α′ is the inherent constant rate of de-methylation ;  β′ is a proportionality constant 
of de-methylation. 
Given the dynamics described above we write the equation for time evolution of the density of 
methylated sites for times between DNA replication known as master equation; with ۦηkۧ density 
of methylated sites: 
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To solve analytically equation (6) we use mean field approximation mentioned in the 

previous section, where 〈ߟߟ〉 ൌ  PkPj ; k ≠ j and also Pj = Pk = P; to obtain a simpler ≡  〈ߟ〉〈ߟ〉
equation that describes the dynamics of density of methylated sites at times between DNA 
replication: 
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                              and by grouping the terms: 
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In steady state this model is a quadratic equation therefore at it’s best can have just one 
stable state even in the absence of fluctuations induced by perturbations due to DNA replication. 

Epigenetic DNA methylation implies alternative states that are stable over time and are 
inherited through cell division. Any model that tries to explain the methylation process should be 



232 
 
able to obtain a coexistence of stable states. Actually the understanding of epigenetic processes, in 
terms of multiple steady states, has been suggested already long ago by Waddington and most 
clearly by Delbrucks [19,20] Multistationarity is the property of systems whose structure is such 
that they can display two or more distinct steady states under identical conditions. In our model the 
requirement of mulitistationarity (or at least of a bistable state) can happen if we allow the de-
methylated and methylated sites to recruit enzymes cooperatively in a non-linear manner to de-
methylated and methylated neighboring sites respectively. 

This will affect the transition rates for methylation/ de-methylation to include a degree of 
non-linear cooperative methylation, respectively demethylation: 
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where m is the degree of non-linear cooperative methylation and p is the degree of non-linear 
cooperative de-methylation. 

In this new context, the quadratic equation (7) is now changed to a polynomial of higher 
order and the model is modified to enable the presence of multiple dynamical attractors. Even for 
the simplest case of non-linear cooperative behavior when m=p=2 we get in steady state a 
polynomial of order 3 instead of the quadratic equation (7) (see Appendix A), obtaining a model 
that can have a bi-stable state and as such the requirement for epigentic DNA methylation and 
memory. In fact if we are calling f(a) the right side of such polynomial equation for m=p=2, f(a) 
will have three zeros, a1 < a2 < a3 in the interval (0,1). 

The scenario relevant to us is when a1 and a3 are stable and are separated by a2 unstable (a3 
corresponds to high concentration of marks and a1 to low concentration of marks) see fig. 3  

 

 
Fig. 3: polynomial equation of order 3 when m=p=2 

 
 

Any initial states with a(0) < a2 will eventually be attracted to a1 while any initial state 
with a(0) > a2 will be attracted to a3. Suppose now that DNA replication takes place periodically 
at time T. Right after replication the density of methylated sites is halved (see fig.1). It is clear then 
that if 

a2 ≥ 
ଵ

ଶ
a3, there will be only one stable fixed point, which will be close to a1 if T is large 

enough (time T to replication considerably larger then the time scale of methylation rates). To see 
this we simply note that starting from a3 the cell after DNA replication will have a value which is 

less than a2 and so will enter the basis of atraction of the stable fixed point a1. However for a2 < 
ଷ	

ଶ
 

and T fulfilling the same conditioned stated earlier, then there will be two stable fixed point, one 
near a1 and one near a3 even with perturbations induced by DNA replication. These puts 
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restrictions on the parameters entering f(a) and T required for the existence of multiple stable 
points and thus of epigenetic memory and regulation; the density of methylated sites right after 
DNA replication (after halving) has to have a higher value then a2 the unstable value. We shall not 
go into this here. It is also possible to give fairly explicit expressions for T in terms of f(a), (see 
Appendix B). 

Going beyound mean field, using Monte Carlo simulations we would like to see if the 
requirement of stability is mainteined in the above framework when the perturbations induced by 
DNA replications are taken in consideration. 

In this sense fig 4. shows how methylation pattern is established and remain stable, 
reaching a stationary state from following the dynamics introduced so far. The DNA replication is 
not yet involved in the process. 

 
 

 
Fig. 4: Establishment of methylated pattern in the absence of DNA replicationevolution of 

the density of methylated states; 1unit time ≈ 1 mcs. 
 
 

When we introduced in the system the perturbation due to DNA replication by simply 
halving periodically the density of methylated sites we see in fig. 5 that the methylated pattern, the 
density of methylated sites is recovered, provided that the time to replication is longer then the 
recovery time, showing as such, explicitly that the dynamics described suffix for the stability of 
the methylated pattern. 

After multiple replication cycles one expects methylation to not be exactly as it was 
originally because of accidental loss or gain, see fig. 5. For Monte Carlo simulation details and 
how the system was prepared see Appendix C. All the parameters used in the simulation were 
chosen based on literature research. 
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Fig. 5: maintenance of methylated pattern in the presence of DNA replicationperiodic 
recovery of methylated states; 1unit time ≈ 1 mcs. pendix C. All the parameters used in the  
                         simulation were chosen based on literature research. 
 
 
4 Discussions 
 
The requirement of non-linearity to can have multiple dynamical attractors in the system 

has been previously studied in other epigenetic contexts [2l]. 
This studies showed that to obtain multistationarity in the system a positive feedback 

circuit is a necessary condition. We note, however, that at a fundamental level the presence of non-
linear cooperative recruitment of enzymes to methylated/de-methylated states might be due to the 
existence of such positive feedback circuit. In Arabidopsis more states are introduced when 
methylation takes place on repeat elements over their entire length and strongly correlates with 
transcription inhibition. Methylation in this case is on CG, CHG and CHH sites instead of solely 
CG sites like on gene body, and as such is sequence dependent. We know from previous work [12] 
that the presence of intermediate states naturally lead to cooperative effects when each of the 
intermediate states recruit enzymes for further modification. 

A continuation of this work would be to analyse the effects of sequene dependency on the 
stability of the methylation pattern and try to understand if non-linearity in the transition rates is 
still a key ingredient in the maintenance of DNA methylation or if solely the presence of more 
states is stabilizing the system. We have phrased the mean-field theory in terms of coarse grained 
quantities like the fraction of sites with a particular mark in a cluster. Given that methylation on 
repeat element takes place over their entire length, a natural question would be to try understand 
how does the effective model change if we continue the coarse-graining to larger length scales. In 
other words: one could ask how the model renormalizes under iterative blocking transformations 
[14,15]. In absence of any conservation law, there is no obvious reason why this system should not 
have a finite (although long) correlation length in space and, similarly, a finite correlation time. 
The system would not have genuinely multiple phases. All these effects, which are missed by 
mean-field theory, would, in principle, show up in renormalization group. 

 
5 Conclusions 
 
The stability of epigenetic DNA methylation is a rich subject in biology. The exact 

function(s), of much of the DNA methylation found outside of repeat elements remain unclear 
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[6,7]. Using an approach routed in statistical physics we proposed a theoretical framework for 
understanding how the methylated and non-methylated states of cytosine are maintained and 
transmitted when perturbations (as DNA replication) are involved. The model explains the 
establishment of DNA methylation pattern i.e. study the dynamics of the density of the methylated 
sites. Analyzes the effect of the non-linear cooperativity (in the transition rates) on the stability of 
the marks and shows that at least in the gene body case where methylation is restricted to CG sites 
in order to have stable DNA methylation patterns transmitted over generations non-linear 
cooperativity is required in the maintenance process. Many features presented here in the context 
of Arbidopsis can be also extendet to DNA methylation in other organisms as well. The model 
extends the view that multi-stationarity in gene body DNA methylation pattern arises by allowing 
the de-methylated and methylated sites to recruit enzymes cooperatively in a non-linear manner to 
de-methylated and methylated neighboring sites respectively. We finish by concluding that overall 
the present work lays the grounds for understanding DNA methylation on repeat elements in 
Arabidopsis, and as such extending the mathematical framework to compleate the modelling and 
understanding of DNA methylation in Arabidopsis. 
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Appendix 
 
A 
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ௗ〈ఎೖ〉

ௗ௧
  = α + 

β

ଶାଵ
 ቀ∑ 〈η୨〉

୩ା୬
୨ୀ୩ି୬ ቁ

ଶ
 - αۦηۧ - 

β

ଶାଵ
∑ηۧቀۦ	 〈η୨〉

୩ା୬
୨ୀ୩ି୬ ቁ

ଶ
- 

 

ߙ - ߚ - ηۧۦ′
 + ηۧۦ′

ఉ′

ଶାଵ
∑ηۧቀۦ	 〈η୨〉

୩ା୬
୨ୀ୩ି୬ ቁ

ଶ
 

 
 Using mean field approximation: ۦηηۧ = ۦηۧۦηۧ≡ PP = Pଶ; and 

∑ P
୩ା୬
୨ୀ୩ି୬  = 2nP, we get: 

 
ௗೖ
ௗ௧

  = α + 
β

ଶାଵ
 ൫∑ ୨ܲ

୩ା୬
୨ୀ୩ି୬ ൯

ଶ
- α ܲ - 

β

ଶାଵ
	 ܲ൫∑ P୨

୩ା୬
୨ୀ୩ି୬ ൯

ଶ
- 

 

ߙ - ′ ܲ - ߚ′ ܲ + 
ఉ′

ଶାଵ
	 ܲ ൫∑ ୨ܲ

୩ା୬
୨ୀ୩ି୬ ൯

ଶ
 

 
and given that ୨ܲ = ܲ୩= P we obtain the polynomial of 3rd order:  
 
ௗ

ௗ௧
 = α – P(α + ߙ  + (′ߚ +′

ସమ	β	

ଶାଵ
Pଶ+ 4nଶ ቀ

ఉ′ିβ

ଶାଵ
ቁ Pଷ 

 
 
B 
 
Let 0 ≤ a(t) ≤ 1 be the fraction of marked sites. In the mean field description  we can formally 
define: 
 

daሺtሻ
dt

ൌ 	Πሺa୧ െ aሺtሻሻ ൌ fሺaሻ 

 
where 0 ≤ aଵ < aଶ < aଷ... < aଶ୩ାଵ ≤ 1. 
We choose an odd number of stationary points since we want f(0) ≥ 0, 
f(1) ≤ 0. The odd zeros of f(a),	aଵ, aଶ... aଶ୩ାଵ will be linearly stable fixed points while the even 
number roots will be unstable fixed points. 
 
If we consider now the effect of DNA replication when the fraction of methylated sites is halved 
then the new „ fixed points” corresponding to the stable fix points ܽ  will have a fraction of 
methylated sites right after mitosis ܽ

∗ with 
 

 ܽ= 0 < ܽଵ
∗ < ቀ

ଵ

ଶ
ቁ ܽଵ, ... ܽଶ ൏ ܽଶାଵ

∗ 	൏ ቀଵ
ଶ
ቁ ܽଶାଵ … .                                                                                                   

 
Let ܶ be the period to DNA replication in which the fraction of marked sites will increase from  

ܽ
∗ to 2 ܽ

∗ during one cycle then integrating (9), we get: 
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ܶ ൌ 	 න
ݏ݀

∏ሺܽ െ ሻݏ

ଶ
∗


∗

ൌ 	  ܤ

ଶାଵ

ୀଵ

݈݃ ܽ െ ܽ
∗

ܽ െ 2ܽ
∗ 

 
 
where the ܤ can be computed in terms of the ܽ. 
 
 

C 
 
In preparing the system we generate a 1D lattice of L sites (0’s and 1’s) with periodic 

bounday conditions. For our simulation we used L=1000. 
Each site is a CG nucleotides that has the potential of becoming methylated or 

dimethylated. We defined two probability distributions: Pଵ is the probability of site i to be 
methylated, P  is the probability of site i to be dimethylated. Each probability distribution is 
constructed based on the transition rates of being methylated or dimethylated described in the 
paper. 

The number of neighbors n around each site i that we randomly pick is kept fixed, and we 
sum the number of methylated sites over this neighbors. 

In the simulation we used n=50. In one iteration we’ve done as following: we start with an 
initial random configuration of sites being methylated and dimethylated. We pick up a site i at 
random, if ∑ ሺ݆ሻݔ  ଵܲ

ା
ୀି  keep the site methylated, else revert to dimethylated; and if 

∑ ሺ݆ሻݔ  ܲ
ା
ୀି 	keep the site dimethylated, else revert to being methylated. I’m doing this L 

times, each time based on previous configuration. I calculate then the number of methylated sites 
and normalize to the length of the lattice. This will give me the density of methylated sites at time 
t. In my simulation one unit of time is echivalent with one monte carlo step. To simulate the DNA 
replication process, we are introducing a periodic fluctuation that has as effect the halving of the 
density of metylated sites periodically at time T.  

In the simulation T is echivalent with 30 monte carlo steps. 
 
 
 


