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COMPUTING THE HOSOYA INDEX AND THE WIENER INDEX OF AN
INFINITE CLASS OF DENDRIMERS

KEXIANG XU"
College of Science, Nanjing University of Aeronautics & Astronautics, Nanjing,
China

A dendrimer is a tree-like highly branched polymer molecule, which has some proven
applications, and numerous potential applications. The Hosoya index of a graph is defined
as the total number of the independent edge sets of the graph, while the Wiener index is
the sum of distances between all pairs of vertices of a connected graph. In this paper, we
give a relation for computing Hosoya index and a formula for computing Wiener index, of

an infinite family of dendrimers.
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1. Intoduction

Dendrimers are nanostructures that can be precisely designed and manufactured for a wide
variety of applications, such as drug delivery, gene delivery and diagnostics etc. The name
“dendrimer” comes from the Greek word "0évdpov", which translates to "tree". A dendrimer is
generally described as a macromolecule, which is characterized by its highly branched 3D
structure that provides a high degree of surface functionality and versatility. The first dendrimers
were made by divergent synthesis approaches by Vogtle in 1978 [1]. Dendrimers thereafter
experienced an explosion of scientific interest because of their unique molecular architecture.

A topological index is a numerical quantity derived in a unambiguous manner from the
structure graph of a molecule. As a graph structural invariant, i.e. it does not depend on the
labeling or the pictorial representation of a graph. Various topological indices usually reflect
molecular size and shape. One topological index is Hosoya index, which was first introduced by H.
Hosoya [2]. It plays an important role in the so-called inverse structure—property relationship
problems. For detais of mathematical properties and applications, the readers are suggested to refer
to [3.4] and the references therein. As an oldest topological index in chemistry, Wiener index first
introduced by H. Wiener [5] in 1947 to study the boiling points of paraffins. Other properties and
applications of Wiener index can be found in [3, 6, 7]. For other tological indices, please see
[8-11].

"Corresponding author: kexxul221@126.com


http://en.wikipedia.org/wiki/Greek_language
mailto:kexxu1221@126.com

266

Let G be a graph with vertex set V(G) and edge set E(G). For a vertex VeV (G),
we denote by Ng (V) the neighbors of V in G. dg (V)= |NG (V)| is called the degree of v in
G or written as d(v) for short. A vertex V of a tree T is called a branching point of T if d(v) >3,

and a vertex in a tree T is called a leaf whend (V) =1. A matching of G is a edge subset in

which any two edges can not share a common vertex. A matching in G with k edges is called a

k- matching of G . The Hosoya index of molecular graph G , denoted by z(G), is defined as [6]:

2(G) =

H
m(G,k),

k

where M(G,K) denotes the number of k-matchings in G for k>1, and

m(G,0) =1. The Wiener index of a molecular graph G was defined as [5]:

W(G)= > ds(u,v),

u,veV (G)
where the summation goes over all pairs of vertices of G and d (U,V) denotes the distance of the

two vertices U and V in the graph G (i.e., the number of edges in a shortest path connecting U and V).
For other undefined notations and terminology from graph theory, the readers are referred to [8].
In this paper we study the Hosoya index and the Wiener index of an infinite class of dendrimers.

Structure of dendrimer D[n] is shown in Fig. 1 for N =1,2,3, where n denotes the step of growth

in this type of dendrimer.

D[1] D[2] D[3]

Fig. 1 Structure of dendrimer D[n] for n=1,2,3
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2. Main results and discussion
To obtain our main results, we list some important lemmas which will be used in the

subsequent proofs.
Lemma 1. [3] Let G be a graph, and v € V (G). Then we have

2(G)=2(G-v)+ > 2(G—{v,w})

weNg (V)

Lemma 2. [3]If G,,G,,:-,G, are the components of a graph G, then we have

k
2(G) = 1_1[ 2(Gy).

i=
Lemma 3. [16,17] Let T be a tree of order n,V,,V,,---,V, be the all branching points of T with
dv,)=m, (i=12,---,k), TilﬂTiza"'oTima be the components of T —V,, and the order of
T; isequalto nij (J=L2,---,m;;i=12,---,K). Then

n+1)
W(T)= 3 - z Z Nip Nig Ny ,where n,+n,+---+n_ =n-1 , and

i=1 1<p<g<r<m;
i=12,---,k.
Let T, be the binary tree whose step of growth is equal to N [see Fig. 2]. In the following

theorem, we give the recursive formula for z(T,) .

TO Tl T2 T3
Fig.2 Thetrees T, for n=0,1,2,3

Theorem 1. z(T,)=z(T, ,)* +2z(T,_,)z(T,_,), where z(T,)=1,2(T,) =3.

Proof. From the definition of Hosoya index, it is easy to check that z(T;))=1,z(T,) =3. When
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n>2, assume that O is the first vertex of T, with a,b as its only neighbors (see Fig. 2) , by

Lemma 1, we have

Z(Tn) = Z(Tn _O) + Z(Tn - {Oaa}) + Z(Tn - {O’b}) :

Note that T, —O consists of two components, each of which is T and

n-1 »

T, —{o0,a}, T —{0,b} are all isomorphicto T, , UT,

- By Lemma 2, we have

Z(Tn) = Z(Tn—l)2 + ZZ(Tn—Z)Z(Tn—l) >

which completes the proof of this theorem. |

Theorem 2. z(D[n])=z(T, )" +4z(T,_,)’z(T,_,)’, where z(D[1])=5.
Proof. From the definition, we obtain z(D[1]) =5 immediately. For n>2, assume that O is
the center vertex of D[Nn] with a,b,c,d as its four neighbors. Obviously, D[N]— 0 consists of

four components, each of which is T, , .

By symmetry, we find that D[n]—a ,

D[n]—b,D[n]-cand D[n]—d are all isomorphic to 2T, , 3T ,.By Lemmas | and 2, we

have
z2(D[n]) = 2(D[n] - 0) + z(D[n] - {o,a}) + z(D[n] - {o,b}) + z(D[n] - {o,c})
+z(D[n]-{o0,d})
= Z(Tn—l)4 + 42(1-n—2)2z(1-n—1)35

which finishes the proof of this theorem. |

Nest we consider the Wiener index of D[n]. In the following theorem we present the formula of
W (D[n]) . From the definition of Wiener index, W (D[1]) =16.

Theorem 3. For a dendrimer D[n] with n>2 we have

n+2 n+2 n+1

W(D[n]) =

Proof. Note that the number of vertices in D[Nn] is:
42° 42"+ 42"+ 1=4Q2" - 1) +1=2""* -3,

For 1<i<n—1,letv, be the vertex of D[n] with the distance 1 from the center vertex
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O. We find that, for 1<i<n-1, the number of suchV,’s is 4%x27"=2"" and the graph

D[n]—-v, has three components, two of which have the same order:
2°42' 4. 42" =2""_1 | while the remaining one of which has the order:
2n+2 _ 3 _ 1 _ 2(2n—i _ 1) — 2n+2 _ 2n—i+l _ 2 )

For the center vertex 0, the graph D[Nn]— 0 has four components, each of which has the

same order 2°+2'+.--4+2"" =2" —1. So by Lemma 3, we have

W(D[n]) _ (2“23— 2] _ 4E2i—1(2n—i _ 1)2(2n+2 _ 2n—i+1 _ 2) _ 4(2n _ 1)3

i=1

N+ _ 9 n-1 . . .
— 3 _ 422I (22n—2| _ 2n+1—| + 1)(2n+1 _ 2n—| _ 1) _ 4(2n _ 1)3
i=1
2n+2 _ 2 n-1 ) . . .
— 3 _ 42 2I [2—2I (23n+1 + 22“) _ 23n—3| _ 2—I (22n+2 _ 2n) + 2n+l _ 1] _ 4(2“ _ 1)3
i=1
N+ _ 9 n-1 . S
— 3 _ 42[2—|(23n+1 + 22!’1) _ 23n—2| _ (22n+2 _ 2n) + 2n+1+| _ 2I] _ 4(2n _ 1)3
i=1

_ (2n+2 _ 2)(2n+2 _ 3)(2n+1 _ 2)
3
+4(N—1)(27"2 = 2") —4(2™ —1)(2" - 2) - 4(2" ~ 1)’

_ 4(23n+1 + 22n)(1 _ 2—(!’1—1)) + %23“(1 _ 2—2(n—1))

_ (2n+2 _ 2)(2n+2 _ 3)(2n+1 _ 2)
3
+4(N 122" —2") —4x 2" (2" = 2) — 42" ~ 1)’

_4(23n+1 _3X22n _2n+1)+§(23n _2n+2)+4X2n _8

B (2n+2 _ 2)(2n+2 _ 3)(2n+1 _ 2) _i
3 3
—8—4(2" —=3x 2™ +3x2" —1)=2x2"""? +16x2"

(5% 2% —2x2") + (4n —1)2>""2 — 4(n - 2)2"

n+2 n+2 n+l1

Thus we complete the proof of this theorem. |
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