INFLUENCE OF TITANIUM-TETRA-ISOPROPOXIDE FLOW ON TiO₂ DOPED SiO₂ FILMS FOR WAVEGUIDE APPLICATIONS

JASPAL P. BANGE^{*}, LALIT S. PATIL^a, D. K. GAUTAM^a

Department of Electronic Engineering, Graduate School of Engineering, Gunma University, Tenjin-cho 1-5-1, Kiryu 376-8515, Japan ^aDepartment of Electronics, North Maharashtra University, Post Box No. 80, Jalgaon – 425 001 (M.S.) India

The GeCl₄ and TiCl₄ are generally used for germanium and titanium doping into SiO_2 films for waveguide applications. Both $GeCl_4$ and $TiCl_4$ are metal halides and produce HCl as a byproduct during the deposition process which is highly toxic and corrosive in nature. Among the metalorganic precursors, titanium tetra-isopropoxide (TTIP) has been most widely used because of low carbon contamination in the deposited films and its high vapor pressure. In the present paper we present for the first time the TiO_2 doped SiO_2 films deposited by indigenously developed FHD system by using TTIP and Octamethylcyclotetrasiloxane (OMCTS) as a source material for TiO₂ and SiO₂ respectively. The effect of TTIP flow rate on the optical, structural and elemental properties of the deposited films have been studied. The refractive index and thickness of the deposited films is studied by ellipsometer. Scanning Electron Microscope (SEM) with EDAX attachment is used to study the surface morphology and elements of the deposited films. The XRD patterns of TiO₂ doped SiO₂ films shows two strong peak at $2\theta = 38.3^{\circ}$ and $2\theta = 44.6^{\circ}$ corresponding to the (004) anatase phase and (210) rutile phase of TiO₂. The confirmation of TiO_2 doping is done by EDAX analysis.

(Received Novem, ber 10, 2009; accepted November 16, 2009)

Keywords: Flame Hydrolysis Deposition, FHD, Titanium-tetra-isopropoxide, Octamethylcyclotetrasiloxane

1. Introduction

Optical quality films of $10 - 20 \mu m$ thickness are a basic requirement for integrated optics devices that are fabricated on silicon substrates. Numbers of specialized methods have been developed for them. These include wet thermal oxidation and thermal nitridation, sputtering, low pressure and plasma enhance chemical vapor deposition and flame hydrolysis. Each method has its own advantages and disadvantages. In CVD the process is time consuming and suffers from a limit in ultimate thickness. In case of PECVD the nature of the process gases makes the deposition system complicated and expensive. Sol-gel technology offers an alternative method of depositing glassy films based on the hydrolysis and polycondensation of metal alkoxides. Unfortunately the basic sol-gel process suffers from serious limitations when it comes to depositing thick, films, which is that the maximum thickness of a layer from a single deposition. Thicker layers generally crack as a result of shrinkage at the drying stage [1].

Flame Hydrolysis Deposition (FHD) technique is the most economical, simple and high growth rate technique for the deposition of high quality optical films. This method was originally developed for fiber preform fabrication. The silica waveguide can be formed on crystalline silicon substrates by a combination of FHD and Reactive Ion Etching (RIE) [2]. Their simple and clear core structures, low propagation loss and almost perfect field matching to optical fibers has lead to silica waveguides on silicon attracting increasing attention in recent years. A simple waveguide structure consists of three layers: buffer, core (guide), and cladding (cover cap). The light

confinement is done by increasing the refractive index of the core layer relative to the upper and lower cladding. This is accomplished by introduction of various dopants e.g., titanium or germanium to the gas mixture during deposition.

The GeCl₄ is widely used for the germanium doping into SiO₂ films [3-8]. This SiO₂-GeO₂ film have lower melting temperature and low propagation loss than SiO₂-TiO₂ films but careful attention has to paid during the consolidation to prevent the GeO₂ contents from vaporizing. The TiCL₄ has been widely used in the deposition of TiO_2 doped SiO_2 films [2, 9-10]. Both GeCl₄ and TiCl₄ are metal halides and produce HCl as a byproduct [11-13] during the deposition process which is highly toxic and corrosive in nature. Among the metalorganic precursors, titanium tetraisopropoxide (TTIP) has been most widely used because of low carbon contamination in the deposited films and its high vapor pressure [14]. Though TTIP alone can produce TiO_2 by thermal decomposition, oxygen source such as O2 and N2O are added along with TTIP to improve film quality. Hence, in this present study we have used TTIP as precursor for doping of TiO₂ in SiO₂ films. Generally SiO₂ films are deposited by the hydrolysis of SiCl₄ in a high temperature H₂-O₂ flame. In this present paper we have replaced the commonly used SiCl₄ by organic compound Octamethylcyclotetrasiloxane (OMCTS). This liquid precursor has low vapor pressure, non corrosive nature, low toxicity and safer to handle as compare to SiCl₄. In the second section of the paper the experimental setup and processing parameters have been discussed. The results are discussed in the third section of the paper. The fourth section concludes the paper.

2. Experimental:

Figure 1 shows the schematic of the experimental setup used in the present study. The system has been developed indigenously at Department of electronics. Silicon wafers (p-100) used as substrate, were cleaned by Trichloroethylene, Acetone and Methanol for removal of contaminations.

Fig. 1. Schematic of the experimental set of Flame Hydrolysis Deposition system.

The FHD system was powered ON and the MFC were allowed to heat up for better performance. After some time the MFC of hydrogen and oxygen were set at 2.0 SLPM and 0.6 SLPM. Substrate temperature was kept constant at 700°C throughout deposition processes. The flame was ignited at the nozzle end and allowed to get stable. Then the flow rate of precursor OMCTS (carrier gas nitrogen) was set to 0.2 SLPM and kept constant through out the processes. In this study the flow of TTIP (carrier gas nitrogen) was varied from 0.04 - 0.10 SLPM with a step of 0.02 SLPM. Both the precursors were passed through the condenser/mixer ([E] as shown in figure 1) for good mixing and then injected at the center of the flame. The deposition time for all the processes is 1.5 min. The effects of the flow rate of TTIP (carrier gas nitrogen) on refractive index, thickness, surface and percentage of elements were studied.

3. Results and discussion

The effect of TTIP (carrier gas N_2) flow rate on refractive index and thickness of the deposited TiO₂ doped SiO₂ film have been studied using Philips SD-1000 Ellipsometer at 632.8 nm wavelength. The measured values of refractive index have been presented graphically in Figure 2. It is clearly observed from the Figure 2 that refractive index of deposited TiO₂ doped SiO₂ films increases with corresponding increase in TTIP flow rate. This increase in refractive index is due to the increase in TiO₂ contents in deposited films. This is evident from the EDAX studies (see Figure 5).

Fig. 2. Effect of TTIP flow rate on refractive index of TiO₂ doped SiO₂ films.

The effect of TTIP (carrier gas N_2) flow rate on thickness of the deposited TiO₂ doped SiO₂ films have been presented graphically in Figure 3. From the figure it is depicted that the thickness of the deposited films increases with the corresponding increase in TTIP flow rate. The concentration of reactant species increases with corresponding increase in flow rate of TTIP which leads to increase in growth rate of the deposited film. Hence, we can conclude that the thickness of the film increases with corresponding increase in TTIP. There is a difference of 150Å in thickness between the first and the last sample which is negligible for the waveguide application.

Fig. 3. Effect of TTIP flow rate on thickness of deposited TiO₂ doped SiO₂ films.

The surface morphology of the TiO_2 -doped SiO_2 films was studied using Scanning Electron Microscope (JEOL/EO make JSM-6360 model).

Fig. 4. SEM microphotograph of the sample DOMCTS-TTIP4.

Figure 4 illustrate the scanning electron microphotograph of a sample. It is depicted from the image that the film is crystalline in nature as compared to the SEM image of undoped SiO_2 films [15]. The SiO_2 : TiO_2 particle sizes were found to be around 1µm. This particle size is much greater than the films deposited by TEOS due to the high growth rate of the precursor OMCTS [16].

The elemental analysis of TiO_2 doped SiO_2 films were carried out using the EDAX technique. Figure 5 shows the plot of Oxygen and Titanium percentage in deposited films for TTIP flow variations. It is depicted from the figure that the Oxygen and Titanium counts decreases and increases respectively with corresponding increase in TTIP flow rate.

Fig. 5. Effect of TTIP flow rate on Oxygen and Titanium percent in deposited TiO_2 doped SiO_2 films.

The crystal analysis of deposited TiO_2 doped SiO_2 films have been carried out by X-ray diffraction technique (Bruker AXS D8 Advance Model). The XRD pattern of the TiO_2 doped SiO_2 films is as shown in Figure 6.

Fig. 6. XRD pattern of the TiO₂ doped SiO₂ films

It is depicted from the figure that two strong peak appears at $2\theta = 38.3^{\circ}$ and $2\theta = 44.6^{\circ}$ is due to the (004) anatase phase and (210) rutile phase of TiO₂. The broad peak between $2\theta = 20^{\circ}$ - 30° corresponds to SiO₂ [17-20]. It is clearly observed from the figure that the peak intensities of both peaks increases with corresponding increase in TTIP flow rate. By comparing the XRD pattern of films the peak due to (210) rutile phase is dominant over (004) anatase phase.

4. Conclusion

The TiO₂-doped SiO₂ films have been successfully deposited using indigenously developed FHD system. The refractive index of the films increases with the increase of TTIP flow rate hence, we can conclude that the refractive index of the films can be controlled by the flow rate of TTIP. SEM microphotograph shows particle size of around 1 μ m. The size of the particle can be controlled by the flow of the precursors. EDAX study confirms the doping of TiO₂ in the SiO₂ films. No chlorine contains and other impurities are observed in the deposited films. In the present study the deposited films were found to be clear and transparent instead of white fluffy, which is the nature of the FHD films. The characterizations were carried out on As-deposited films. However, the effect of annealing on the properties of the films can be the further scope of study. The deposited films not only have applications in the field of waveguides but are also useful in the industrial waste water treatment and solar cells.

References

- [1] A. S. Holmes, R. R. A. Syms, Ming Li, Mino Green, Applied optics 32(25), 4916 (1993).
- [2] Masao Kawachi, Optical and Quantum Electronics, 22, 391 (1990).
- [3] Dongwook Shin, J. Ceramic Processing Research 7(4), 379 (2006).
- [4] Pushkar Tandon and Heather Boek, J. of Non-Crystaline Solids, 317, 275 (2003).
- [5] Jesus M. Ruano, Vincent Benoit, J. Stewart Aitchison and Jonathan Cooper, Annal Chem. 72, 1093 (2000).
- [6] Dongwook Shin, and Jae-HO Eo, J. Ceramic Processing Research, 6(4), 345 (2005).
- [7] G. Barbarossa, P. J. R. Laybourn, Electronics Letters, **28**(5), 437 (1992).
- [8] A. J. McLaughlin, J. R. Bonar, M. G. Jubber, P. V. S. Marques, S. E. Hicks, C. D. W. Wilkinson and J. S. Aitchison, J. Vac. Sci. Technol., B **16**(4), 1860 (1998).
- [9] M. Kawachi, Mitsuho Yasu and Morio Kobayashi, Jpn. J. Appl. Phys., 22 (12), 1932 (1983),.
- [10] M. Kawachi M. Yasu, T. Edahiro, Electronics Letters 19(15), 583 (1983).

- [11] Jesus M. Ruano, Vincent Benoit, J. Stewart Aitchison and Jonathan M. Cooper, Analytical Chemistry, **72**(5) 1093 (2000),.
- [12] Choon-Gi Cho, Myung Yung Jeong, Tae-Goo Choy, Journal of Materials Sci. 34, 6035 (1999).
- [13] Y. T. Kim, S. M. Cho, Y. G. Seo, H. D. Yoon, Y. M. Im, D. H. Yoon, Cryst. Res. Technol., 37(12), 1257 (2002).
- [14] Sung-Hoon Jung, and Sang-Won Kang, Jpn. J. Appl. Physics. 40, 3147 (2001).
- [15] J. P. Bange, L. S. Patil and D. K. Gautam, Progress In Electromagnetics Research M, 3, 165 (2008).
- [16] Heiko Briesen, Andre Fuhrmann and Sotiris E. Pratsinis, Chemical Engineering Science 53(24), 4105 (1998).
- [17] Takao Edahiro, Masao Kawachi, Shoichi Sudo, and Satoru Tomaru, Jap. J. Appl. Phys. 19(11), 2047 (1980).
- [18] Hyungsoo Shin, Ji-Hyun Yi, Jong-Gab Baek and Mansoo Choi, J. Material Res. 17(2), 315 (2002).
- [19] Choon-G Choi, Myung-Yung Jeong, Tae-Goo Choy, Journal of Material Science, 34, 6035 (1999).
- [20] Tae-Hong Kim, Hee-Kyung Sung, Ji-Won Choi and Ki-Hyung Yoon, ETRI Journal 25(2), 73 (2003).

^{*}Corresponding author: jaspal_bange@hotmail.com; bange@atec.gunma-u.ac.jp