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Using chemical bath deposition technique, five samples of heterojunction core-shell thin 

films of PbS/CdO were deposited on plane glass substrates at bath temperature of 353K. 

Two out of the five thin film samples were subjected to 473K and 673K annealing 

temperatures in order to investigate the effect of thermal annealing on the properties of 

interest while one sample was left as control. XRD studies showed that the double layer 

components were polycrystalline with sharp and dominant peaks. Peak broadening was 

observed in the recorded diffraction patterns of the polycrystalline thin films. Four point 

probe analysis showed that the conductivity varied proportionally with temperature 

indicating that the films are semiconductors. UV studies reveals that the transmittances of 

the films were significantly modified by heat treatments.  In particular, the transmittance 

was lowest for the film annealed at 673K. The band gap was observed to decrease with an 

increase in annealing temperature, with values in the range (1.25 - 1.75eV) suitable for 

solar photovoltaic and thermal applications. 
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1. Introduction 
 

Energy is the motive force behind the sustained technological development of any nation 

and Nigeria is blessed with reasonably high quantities of various energy resources. These include 

the non-renewables such as crude oil, natural gas, coal and uranium and the renewables such as 

biomass, solar, wind and hydro energy. At present, the dominant energy source used in Nigeria is 

oil and its derivatives, accounting for over 75% of the total energy consumption except in the rural 

areas where biomass in the form of fuel wood dominates. 

The environmental consequences of harnessing these non-renewable energy sources are 

assuming alarming proportions. Therefore, Economic and environmental reasons are making us to 

shift emphasis to the renewable energy resources.  One of the most viable options particularly in 

Nigeria is the abundant solar energy falling on the surface of the earth.  Nigeria is blessed with 

enormous solar radiation that can be harnessed; solar radiation intensity varies from 7.0kwh/m
2
 at 

the extreme north to 3.5kwh/m
2
 in the extreme south. These figures are sufficient for thermal and 

photovoltaic applications [1].  

Photovoltaic is the most useful way of utilizing solar energy by directly converting it into 

electricity. The first generation of solar cells were made from semiconductor materials like silicon. 

However, the high cost of processing silicon materials has limited large production of solar cells 

for commercial purposes. The goal of bringing photovoltaic cells down to the cost of conventional 

electricity may only be achieved if they are made of polycrystalline thin films as well as non-
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silicon compounds that are relatively inexpensive and readily available. Thin film approach of 

producing solar cells reduces cost by using small amount of material and inexpensive processing. 

In recent years, the development of core-shell structured materials have been receiving 

extensive attention because of their various applications such as coatings, solar cells and 

photocatalysis [2]. The shell can alter the charge, functionality, and reactivity of surface, or 

improve the stability and dispersive ability. Furthermore, catalytic, optical, or magnetic functions 

can be imparted to the core particles by the shell material. In general, the synthesis of core/shell 

structured material has the goal of obtaining a new composite material having synergetic or 

complementary behaviours between the core and shell materials [2]. 

There are many studies on the synthesis of core-shell thin film materials. The effects of 

thermal annealing on the optical and band gap of TiO2/Fe2O3, TiO2/CoO and TiO2/CuO core-shell 

thin films have been reported [3-5]. Particle size analysis for different substrate of ZnS/ZnO 

core-shell has been studied [6]. Core-shell thin films of TiO2 /Fe2O3, TiO2/CuO, ZnO/PbS, 

ZnO/CuS, CdS/PbS, TiO2/PbS have been studied for various solar energy applications [7-12]. 
In this study, we report the synthesis of PbS/CdO thin film via simple and inexpensive 

chemical both deposition technique. We also present the effect of post deposition annealing on the 

as-deposited film at temperature of 473K and 673K. 
 

 

2. Theory 
 

The use of thin films in optical applications require accurate knowledge of the optical 

constants over a wide wavelength range [13]. Most spectrophotometer give the absorbance data 

from which transmittance, absorption coefficient and other optical constants were determined. The 

relationship between the absorbance, A  and transmittance, T is thus: 

 

    10             (1)          

                                                                                                        

The absorption coefficient,   of thin films can be expressed in terms of absorbance, A 

and thickness, t as [14]. 
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This absorption coefficient,   is related to the energy gap, 
g  of a semiconductor [15]: 
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Where A is a constant, hv is the photon energy, α is the absorption coefficient and n is an index 

that characterises the nature of the transition. For n = 1/2, the transition is generally accepted to be 

direct. Hence a linear graph of (αhv)
2 
 versus hv will show Eg as intercept on hv axis. However, the 

usual difficulty in applying this concept to polycrystalline thin films with nanometre scale 

crystalline grain is the size distribution of grains and consistent change in the band gap due to 

quantum confinement effect [16, 17]. Thus the straight line portion may not extend beyond a few 

tenths of an electron volt and hence value of the band gap could turn out to be very subjective [18].  

The change in energy band gap is given by [19]: 
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Where  Me , Mh are the effective masses of electrons in the conduction band and holes in the 

valence band respectively, E is the static dielectric constant of the material and ∆Eg is the change 

in the band gap. The first term represents the particle in a-box quantum localization energy and has 

an inverse square relation 1/R
2
 dependence where R is the particle radius, while the second term 

represents the Coulomb energy with 1/R dependence. Therefore as R increases due to the increase 

in the crystalline size associated with temperature annealing, the value of ∆Eg will decrease. 

The electrical characterization of thin films can give a clear idea regarding the transport 

mechanism related to the electrical conduction which gives the value of electrical resistivity, 

and conductivity,  of films. The sheet resistant is given by [20].  

 

     

                    𝑅𝑠 = 4.53 ×
𝑉

𝐼
                                                                          (5) 

 

Where 𝑉 is the measured voltage between the two inner probes and 𝐼 is the current passed through 

the outer probes. The resistivity was determined from the relation [21]: 

 
                 𝜌 = 𝑅𝑠 × 𝑡                                                                                         (6) 
    

Where 𝑡  is the thickness of the conducting layer while 𝜌 is the resistivity and 𝑅𝑠 is the sheet 

resistance. From the value of   𝜌, the conductivity 𝜎  was determined using the relation [21] :  

 

               𝜎 =
1

𝜌
                                                                              (7) 

 

                     

                                                                                                              

3. Experimental  
 

The chemical bath for the deposition of PbS-CdO core-shell thin film was done in the 

following order. First, the core PbS was deposited in a bath composed of 5mls of 0.2M Pb(NO3)2, 

5mls of  1M SC (NH2)2, 5mls of 1M NaoH and 35mls of distilled water put in that order in 50ml 

cleaned and dried beaker. Five (5) clean glass slides were then inserted vertically into the solution. 

The deposition was allowed to proceed at room temperature for 50 minutes after which the 

substrates coated with dark deposits were removed, washed with distilled water and allowed to dry. 

The deposition of PbS/CdO was achieved by inserting the substrates coated with PbS deposits into 

a mixture containing 10mls of 0.2M CdSO4, 10mls of 1M SC (NH2)2, 2mls of 100%  NH3 and 

30mls of distilled water into 50ml beaker. Deposition was allowed to proceed at temperature of 

353K for 1 hr. Two out of the five samples of the core-shell thin films deposited were heated 

(annealed) at temperatures of 473K, and 673K for one hour in an oven. The purpose of annealing 

is to know the temperature at which the samples can be exposed without damage and also to 

investigate the effect of temperature on the properties of the film.  One of the remaining samples 

served as the control during characterization. Thermo scientific GENESYS 10S model UV-VIS 

spectrophotometer on the 300-1000 nm range of light at normal incidence to samples was used to 

obtain the absorbance data from which transmittance, absorption coefficient and optical 

parameters were calculated. Structural studies were done with Rigaku Ultima IV X-ray 

diffractometer equipped with a graphite-monochromated CuKα radiation source (40KV, 30mA) 

and four point probe (Keithley model) was used for the electrical characterization of the film 

samples. 
 

 
 

4. Result and discussion 
 

Rutherford backscattering (RBS) was used to determine the elemental composition, depth 

profile and thickness of the film samples by Proton Induced X-ray Emission (PIXE) scans on the 

samples from a Tandem Accelerator Model 55DH 1.7MV Pellaton. The RBS analysis of PbS/CdO 
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for as-deposited, thermally annealed at 473K and 673K are shown figure 1, 2, and 3 respectively. 

In RBS analysis, film thickness is determined by the width of the peak. The concentration is 

determined by the intensity or height of the peak. The thickness of the film samples as deciphered 

by RBS are 2000nm, 1423nm and 974nm for the as-deposited, thermally annealed at 473K and 

673K respectively. 

 

 
 

Fig. 1. RBS micro graph of PbS-CdO core-shell thin film as-deposited 

 

 

 
 

Fig. 2. RBS micro graph of PbS-CdO core-shell thin film at 473K 

 

 

The chemical status and elemental composition of as-deposited PbS/CdO thin film 

comprises 11.08% lead (Pb), 70.97% cadmium (Cd), 77.25% sulphur (S) and 29.03% oxygen. The 

annealed at 473K composed of 18.72% Pb, 91.27% Cd, 79.25% S and 26.27% oxygen. The 

annealed at 673K consists of 25.61% Pb, 7.73% Cd, 74.35% S and 8.73% oxygen. 

 

 
 

Fig. 3. RBS micro graph of PbS-CdO core-shell thin film at 673K 
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The XRD diffractograms of PbS-CdO thin films for as-deposited, thermally annealed at 

473K and 673K are presented in figures 4, 5 and 6 respectively. Such X-ray spectra display 

prominent peaks located at the following angular positions: 2θ = [26.00, 30.00, 43.00, 53. 00]. 

They are related with the reflection peaks of (111), (200), (220), (311) respectively. The 

diffraction peaks of 2θ = [26
o
, 30

o
] can be perfectly indexed to Galena PbS displaying the cubic 

crystalline phase according to reference patterns JCPDS 05-0592. The peak of 2θ values of 43
o
 is 

identified to be CdO (JCPDS 00–042-1411). Peak broadening was observed in recorded diffraction 

patterns of the polycrystalline thin films. The average grain size of the film samples are 68.96nm, 

73.49nm and 80.48nm for as deposited, thermally annealed at 473K and 673K respectively. 
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Fig. 4. XRD pattern of PbS-CdO as-deposited 

 

 

The average grain size of the film samples were calculated using the Debye Scherer’s formula [22] 
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                                        Fig. 5. XRD pattern of PbS-CdO annealed at 473K 
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Fig. 6. XRD pattern of PbS-CdO at 673K 
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The optical absorbance and transmittance are shown in Figs. 7 and 8 respectively. From 

Fig. 7, it is seen that the strongest absorption peak of the as-deposited appears at 300nm-700nm. 

Thermally annealed 47K and 673K samples have strongest absorptions at 300nm-750nm and 

300nm-850nm respectively. In all these samples, the absorbance is generally high especially in the 

VU-VIS regions. This characteristics of high absorbance make the film suitable for coating the 

surface of solar collectors for solar thermal applications. Solar collectors for heating fluids require 

increasing the reception area of the solar radiation, and/or to increase the absorbance of the surface 

coating in order to improve thermal efficiency. The spectral distribution in fig. 8 shows that 

transmittance decreases with annealing temperature exhibiting a maximum for as-deposited 

sample. This may be a consequence of increase in particle size associated with increase in 

temperature. This is collaborated by the XRD results which show that the sample annealed at 

673K has the highest grain size. The transmittance of thin films can be greatly modified by 

different deposition parameters. In the literature, the concentration dependent optical behaviour 

and variation of transmittance caused by different deposition time have been reported [23, 24]. 

 
 

 

 

 

 

           

 

 

 

 

 

 

Fig. 7. Optical absorption spectrum of PbS/CdO core-shell at different 

annealing temperatures 

 

 

 

 

 

        

 

 

 

 

 

 

 

 

Fig. 8. Optical transmission spectrum of PbS/CdO core-shell at different 

 annealing temperatures 

 

 

Fig. 9 shows the plots of the absorption coefficient (α) against photon energy (hν) at the 

different annealing temperatures. The optical absorption coefficient were very high in all the layers. 

However, the plot of the optical absorption coefficient of the annealed at 673K layer was relatively 

higher compared to that of the other layers. The high value of the optical absorption coefficient is 

an indication that the films can be utilized in different optoelectronic devices. 

            The plot of 2( )hv versus hv  for the film samples shown is presented in figure 10 and 

indicates the presence of direct transition. The straight portion is extrapolated to energy axis at α = 

0 which gives the band gap energy g  of the PbS-CdO films as 1.75eV, 1.50eV and 1.25eV for 

the as-deposited, thermally annealed at 473K and 673K respectively. The value of the energy 

bandgap of the as-deposited layer was higher, compared to the annealed layers i.e, a clear 
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indication of bandgap narrowing induced by the post deposition heat treatments. The decrease in 

the energy bandgap of the heat treated layers was attributed to the increase in grain size and/or 

related phenomena, caused by the annealing effects [25]. The decrease in energy band gap caused 

by post deposition heat treatment has been widely reported by other authors [2-4, 26, 27] 

 
 

 

 

 

 

 

 

 

 

 

 

 
                                                   

Fig. 9. Absorption coefficient against photon energy plots of PbS/CdO  

at different annealing temperatures 

 

 

 
 

Fig. 10: Plots of 
2( )hv as a function of hv at different annealing temperatures 

 

 

The decrease in energy band gap is collaborated by the fact that the band gap can be 

expressed in terms of the effective mass approximation in equation (4). Therefore as R increases 

due to the increase in the crystalline size associated with temperature annealing, the value of 
g

will decrease. Fig. 11 displays the electrical conductivity,   versus 1000/T curve for as-deposited, 

thermally annealed 473K and 673K samples. From equation (7), it is obvious that increasing 

electrical conductivities implies decreasing electrical resistivities, thus the resistivity of the films 

decreased due to the post deposition heat treatments. The thermally annealed 673K film had the 

highest electrical conductivity. This may be due to the highest grain size of thermally annealed 

673K film. The increase of grain size may be due to the improved crystallanity of 673K film. The 

growth in grains leads to the reduction of grain boundary scattering which decreases the resistivity 

for the films and eventually the increase in the conductivity of the films [28]. 
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                Fig. 11. Variation of electrical conductivity as a function of annealing temperature 

 

 
 

 

5. Conclusions 
 

The effect of thermal annealing on the properties of PbS/CdO core-shell thin film has been 

investigated. The structural optical and electrical properties of the films were observed to be 

temperature dependent.  The results show that post deposition annealing lowers band gap of the 

film samples. The optical characteristics of the film samples are suitable for various solar 

architecture. 
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