
Chalcogenide Letters                              Vol. 8, No. 5, May 2011, p. 325 - 340 
 
 

 
 

STRUCTURAL, ELASTIC AND ELECTRONIC PROPERTIES OF NEODYMIUM 
CHALCOGENIDES (NdX, X=S, Se, Te): FIRST PRINCIPLES STUDY 
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First principle calculations on structural, elastic and electronic properties of neodymium 
chalcogenides (viz. NdX, X= S, Se, Te) have been made using the full-potential 
augmented plane-waves plus local orbitals (APW + lo) within density-functional theory 
(DFT) using generalized gradient approximation (GGA) for exchange correlation 
potentials. The ground state lattice parameter, bulk modulus and its pressure derivative 
have been obtained using optimization method. Young’s modulus, shear modulus, Poisson 
ratio, sound velocities for longitudinal and shear waves, Debye average velocity, Debye 
temperature and Grüneisen parameter have also been calculated for these compounds. 
Calculated structural, elastic and other parameters are in good agreement with available 
data. From electronic calculations, it has been found that electronic conductivity in 
neodymium chalcogenides is mainly caused by the Nd p-orbital electrons and S (Se or Se) 
s-orbital electrons.  
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1. Introduction 
 
Due to complexity of synthesis and characterization procedure of the materials, computer 

modeling investigations have become very important tool to determine and to predict the material 
properties such as elastic, electronic, optical, magnetic, mechanical etc. The theoretical 
investigations provide the possibility not only to explain the already known properties of a given 
material but also to predict what property will be expected for a hypothetical material. 

In recent years, there is growing interest in the study of the structural, elastic and 
electronic properties of rare earth chalcogenides (REC) due to their promising applications in 
spintronics and spin filtering devices [1]. Rare earth chalcogenides are trivalent at room 
temperature except Er and Yb chalcogenides. It is expected that REC will play a key role in 
electronics and photonics technology due to trivalent electronic properties relative to the highly 
correlated f-electrons [2].Therefore, in the present article, neodymium chalcogenides belonging to 
REC category have been chosen for the structural, elastic and electronic study.  

Neodymium chalcogenides belong to the class of binary rare-earth chalcogenides with 
space group Fm3m (number 225) having (B1) NaCl-type structure. These are typical members of 
rare earth chalcogenides having Wyckoff’s position Nd (0, 0, 0) and X (1/2, 1/2, 1/2), where X= S, 
Se and Te. Several studies have been made on neodymium chalcogenides e.g. Fumer et al [3] 
measured the energies and width of the crystal field by neutron inelastic scattering method. 
Papmentallo et al [4] have studied the magnetic properties of these chalcogenides. In addition to 
theoretical study, electronic properties of neodymium chalcogenides have been studied using 
LSDA+U method by Antonov et al [5]. 
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The knowledge of structural stability with elastic properties plays an important role in 
determining the strength of the compounds and provides the valuable information about the 
bonding between atomic planes, anisotropic character of bonding, structural stability and sound 
velocities. Furthermore, these are associated with specific heat, thermal expansion and Debye 
temperature [6]. Electronic properties provide the valuable information about bonding character, 
degree of ionicity, valance charge symmetry and band structure properties [7, 8]. Therefore, in the 
present article, we report the first principles investigations on structural, elastic and electronic 
properties of neodymium chalcogenides, NdX (X= S, Se, Te) in rock salt structure using full 
potential (linear) augmented plane wave plus local orbital (FP-APW + lo) method within  the 
density functional theory based on Perdew-Burke- Ernzerhof (PBE) functional. 

 
 
2. Computational Approach 
 
2.1 Methodology  
 
In the present paper, full-potential (linear) augmented plane wave plus local orbital (FP-

APW + lo) method within the density functional theory, implemented in the WIEN2k code [9] has 
been applied for the study of structural, elastic and electronic properties of B1 type structured 
neodymium chalcogenides viz. NdS, NdSe and NdTe. Generalized Gradient Approximation based 
on Perdew-Burke- Ernzerhof (PBE-GGA) functional [10, 11] has been used to determine the 
optimized structure of these compounds. In this method the unit cell is divided into non-
overlapping spheres centered at atomic sites of radius and an interstitial region. APW + lo method 
expands the Kohn–Sham orbitals in atom like Muffin–tin spheres and plane waves in interstitial 
region. The basis set inside each Muffin-tin sphere is split into core and valence subsets. The core 
states are treated within the spherical part of the potential only and are assumed to have a 
spherically symmetric charge density totally confined inside the Muffin–tin spheres [12-14]. The 
valence part is treated within a potential expanded into spherical harmonics upto l=4. The valence 
wave functions inside the spheres are expanded up to lmax = 8. A plane-wave expansion with Rmt · 
Kmax = 8, and k sampling with a 4 х 4 х 4 k-points mesh in the full Brillouin zone turns out to be 
satisfactory. The k integration over the Brillouin zone is performed using the Monkhorst and Pack 
mesh [15]. The energy that separates the valance state from the core state has been chosen to be -
6.0 Ryd. The leakage electrons from the Muffin-tin radius are found to be less than 0.0001. The 
electronic configuration of Nd, S and Se are [Nd] 1s2 2s2p6 3s2p6d10 4s2p6d10f4 5s2p6 6s2   , [S] 1s2 
2s2p6 3s2p4, [Se] 1s2 2s2p6 3s2p6d10 4s2p4 and [Te] 1s2 2s2p6 3s2p6d10 4s2p6d10f4 5s2p6 6s2 
respectively. Thus, [Nd]:4f46s2, [S]:3s23p4 and [Se]:3d104s24p4 and [Te]: 4d10 5s2 5p4 states are 
treated as valance electrons. 

 
 
2.2 Theory of elastic moduli and related parameters 
 
The elastic constants determine the response of the crystal to external forces, as 

characterized by bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio, and 
obviously play an important role in determining the strength and stability of materials. The theory 
of obtaining the structural and elastic moduli is described as follows [16] 

The total energy of a crystal in strained state is given by 
 

                         elastictotaltotal VVPEE φ+−+= )( 0
0                                       (1) 

 
Where totalE 0  is the total energy of unstrained crystal, 0V is volume of crystal in initial state, 

V is volume of the strained lattice, P  and elasticφ  are the pressure and elastic energy respectively 
defined by 
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(Here i, j, k, l = 1, 2, 3) 

 In Voigt two suffix notations, elasticφ is given by 
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Where ijC  are elastic moduli derived from second order derivative of totalE  and are given by;  
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 A cubic crystal has only three independent elastic constants, namely, C11, C12 and C44. As a 
result, a set of three equations is needed to determine all the constants. Hence, three types of 
strains must be applied to the starting crystal [16 - 18]  
(i) The first type strain involves calculating the bulk modulus, given by the formula 
 

                                        3/)2( 12110 CCB +=                                           (5) 
 
(ii) Second type strain involves performing volume conservative tetragonal strain given by the 
following tensor 
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This strain has an effect on the total energy from its unstrained state given by following equation 
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(iii) Lastly, for the third type of deformation, we use the volume conserving rhombohedral strain 
tensor given by  
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Where 3( )O ε indicates that the neglected terms in the polynomial expansion are cubic 
 Once we have calculated three elastic constants namely C11, C12 and C44, bulk modulus, B, 
isotropic shear modulus, G, Young’s modulus, Y,  and Poisson ratio, ν can be calculated easily 
using the following explicit expressions [19]: 
 

                                        3/)2( 1211 CCB +=                                          (10) 
 

                                       2/)( RV GGG +=                                              (11) 
 
Here VG  is Voigt’s shear modulus corresponding to the upper bound of G values, and RG   is 
Reuss’s shear modulus for cubic crystals corresponding to the lower bound values, expressed as:  
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2.3 Theory of sound velocity, Debye temperature and Gruneisen parameter 
 
 Sound velocity for longitudinal and shear waves (VL and VS) and Debye average velocity 
(Vm) can be obtained using bulk modulus, isotropic shear modulus and mass density. The explicit 
expressions are as follows [20] 
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 The Debye temperature, θD and Grüneisen parameter, ς  are two useful parameters in solid-
state problems because of their inherent relationship to lattice vibrations. The Debye temperature 
θD can be used in characterizing the excitation of phonons and to describe various lattice thermal 
phenomena and Grüneisen parameter describes the phonons contribution to specific heat. 
 Debye temperature, Dθ [20] and Grüneisen parameter,ς [21] are sound velocity and mass 
density dependent, which are calculated using the expressions given by   
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Here, in equation (17), )2/( πh= h being the Plank Constant and n, Na, ρ and M, Bκ are 
the number of atoms in the molecule, Avogadro’s number, mass density, molecular weight and 
Boltzmann constant respectively. 
 
                             

3. Results and discussion  
 
3.1 Structural and elastic properties 
 
Ground state properties of neodymium chalcogenides have been obtained using the 

calculation of total energy for a set of unit cell volume and fitted in Murnaghan’s equation of state 
[22], which gives energy vs. volume curve equation of state. The total energy vs. volume curve for 
neodymium chalcogenides (viz. NdX, X=S, Se and Te) are shown in Figures 1-3. Calculated 
ground state lattice parameter (ao), bulk modulus (Bo) and its first order pressure derivative (B0 ), 
obtained using GGA approximation are shown in Table 1. No values of ground state bulk modulus 
and its first order derivative for NdX (X=S, Se, Te) are available in literature. Thus, only the 
comparison has been made for lattice parameter [1, 4] which shows good agreement with available 
values.  

 

 
 

Fig. 1. Total energy as a function of volume for NdS with GGA calculation 
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Fig. 2. Total energy as a function of volume for NdSe with GGA calculation 
 
 

 
 

Fig. 3. Total energy as a function of volume for NdTe with GGA calculation. 
 

 
Elastic moduli are the important parameters of a material, which provide the valuable 

information about the structural stability of the material. Second-order elastic constants and their 
pressure derivatives provide insight into the nature of binding forces between atoms since they are 
represented by the derivatives of free energy of the crystal. Further, the response of a material to 
an applied stress is determined by the elastic constants. 

Elastic moduli of neodymium chalcogenides obtained from energy variations due to 
application of small strain to equilibrium lattice configuration, have been given in Table 2. Bulk 
modulus, B Young’s modulus, Y isotropic shear modulus, G and Poisson ratio, ν have also been 
listed in Table 2.  To the best of our knowledge, no experimental or theoretical values of elastic 
moduli for the studied compounds are available in literature. The mechanical stability conditions 
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[23, 24] (C11 - C12 > 0, C11 > 0, C44 > 0, C11 + 2C12 > 0) can lead for the validity of elastic moduli. 
The calculated elastic constant values satisfy all these stability conditions, including the fact that 
C12< C11. Furthermore, calculated elastic moduli also satisfy the cubic stability condition i.e. C12 < 
B < C11. Thus our calculated values of elastic moduli are justified.  

 

Table 1. Calculated lattice constant, a0 (
0
Α ), bulk modulus, B0 (GPa), its pressure 

derivative, B0' for NdS and NdSe using GGA functional. 
 
                

 
 

Table 2. Calculated elastic moduli, Cij (GPa), Bulk modulus, B (GPa), Young’s modulus, Y 
(GPa), Isotropic  shear modulus, G (GPa), Poisson ratio, ν using GGA 

 

 
 
Higher values of Young’s modulus in comparison to the bulk modulus (see Table 2) 

indicate that these materials are hard to be broken [25]. The B/G value is an index of 
ductility/brittleness of a material, proposed by Pugh [26]. If B / G > 1.75, then ductile behavior is 
predicted, Otherwise, the material behavior in brittle manner. The B/G ratio for three neodymium 
chalcogenides is found to be greater than 1.75 (Table 2). Therefore, all the three compounds are 
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ductile. The B / G ratio is larger for NdS and smaller for NdTe, reflecting NdS is most ductile, 
while NdTe is least ductile. Furthermore, the ratio B/G depends upon isotropic shear modulus, G 
and bulk modulus, B via elastic constants (see equation (10), (11) and (12)). Values of elastic 
moduli (C11, C12 and C44) are maximum for NdS and minimum for NdTe, indicating, greater the 
values of C11, C12 and C44 greater will be ductile behaviour of the compounds in these Nd 
chalcogenides.  The Poisson ratio, ν  gives the information about the covalent/ionic behaviour of 
the materials. The value of the Poisson ratio, ν for covalent materials is of order of 0.1, whereas 
for ionic materials a typical value of ν is 0.25 [23]. In our case ν ∼ 0.31, i. e. a higher covalent 
contribution in interatomic bonding is found in these chalcogenides. 

 
 

Table 3. Calculated, Mass density, ρ (gm/cm3), sound velocities (103 m/sec) for longitudinal and shear wave 
(VL and VS), average Debye velocity, Vm (103 m/sec), Debye temperature, θD (K) and Grüneisen 

parameter   for NdS, NdSe and NdTe 
 
                                                  NdS                                             NdSe                                            NdTe        
  
          ρ                                    6.70                                             7.23                                              7.26 
              
          VL                                                     4.66                                              3.79                                              3.47 
              
          VS                                   2.36                                             1.96                                              1.81 
              
          Vm                                   2.65                                             2.20                                              2.02 
             
          θD                                   584                                              463                                               398 
          
          ζ                                    1.95                                              1.87                                              1.85 
 

                   
The sound velocity for longitudinal and shear waves (VL and VS) and Debye average 

velocity, Vm have been calculated using equations (14), (15) and (16) respectively and are 
presented in Table 3. It is clear from sound velocity data that sound velocity decrease from NdS to 
NdTe due to increasing the anion weight. Debye temperature, Dθ  and Grüneisen parameter, 
ς have been calculated from equations (17) and (18) and also given in Table 2. Debye temperature 
is directly related to the Debye average velocity (see equation (17)). Thus greater the Debye 
average velocity, greater is the Debye temperature. Furthermore, Debye temperature decreases 
from NdS to NdTe due to decrease in Debye average velocity, which is an effect of increasing in 
the atomic weight. Grüneisen parameter is the measure of anharmonicity. Greater the Grüneisen 
parameter, greater will be anharmonicity. Grüneisen parameter is large for NdTe, thus, 
anharmonicity is larger in NdTe. These findings are in general trends of the similar NaCl 
structured compounds [1, 19, 23 and 28]. 

 
 
3.2 Electronic properties 
 
In order to investigate the bonding properties of neodymium chalcogenides, total valance 

charge density distribution has been shown in Figures 4-6 for NdS, NdSe and NdTe respectively. 
The charge density distribution shows spherically symmetric concentration centered on Nd and S 
(Se or Te) atoms. The charge density is more symmetric and dense around S (Se or Te) than that of 
neodymium. It is characterized by ionic bonding due to small charge transfer from Nd to S (Se or 
Se). The charge distribution shows the weak bonding and consequently considered as the result of 
semi-metallic bonding.  
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Fig. 4. Contour plot of the total valence charge density in the (100) plane of NdS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  
 
 
 

Fig. 5. Contour plot of the total valence charge density in the (100) plane of NdSe 
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Fig. 6. Contour plot of the total valence charge density in the (100) plane of NdTe 
 
 
To explain the contribution to electronic conductivity, the electron dispersion curve along 

high symmetry direction in the Brillouin zone with GGA calculation for NdS, NdSe and NdTe 
have been shown Figures 7-9 respectively. Calculated total density of states for NdS, NdSe and 
NdTe with their separate atoms have been shown in Figure 10 and partial density of states 
spectrum for s, p, d and f states for Nd, S, Se and Te have been shown in Figures 11-14. The 
overall profiles of the band structure and density of states show similar features for the three 
compounds. The spectra are mainly composed of three groups of states at around -18.5 eV, -13 ev, 
-4 eV, below the Fermi level. From Figure 7-14, it can be seen that the lowest lying bands at 
around -18.5 eV arise from the Nd p-states with a small amount of S (or Se or Te) s-states. The 
states in the bands at around -13 eV are entirely derived from S (or Se or Te) s-states with a small 
amount of Nd p-states, while Nd s-states have negligible contribution. The states around -4 eV 
arise from S (or Se or Te) p states and Nd  d and f states.    

 

Nd 

Nd 

Te 

Te 
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Fig. 7. The electron dispersion curve along high symmetry direction in the Brilloun zone 
for NdS   with GGA calculation. 

 
 

 
 
Fig. 8. The electron dispersion curve along high symmetry direction in the Brilloun zone 

for NdSe with GGA calculation. 
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Fig. 9. The electron dispersion curve along high symmetry direction in the Brilloun zone 
for NdTe   with GGA calculation. 

 

 
 

Fig. 10. Calculated total density of states for (a) NdS, Nd and S (b) NdSe, Nd and Se (c) 
NdTe, Nd and Te 
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Fig. 11. Calculated partial density of states for s-states for (a) Nd and S (b) Nd and Se (c) 

Nd and Te 
 

 
Fig. 12. Calculated partial density of states for p-states for (a) Nd and S (b) Nd and Se (c) 

Nd and Te 



338 
 

 
 
Fig. 13. Calculated partial density of states for d-states for (a) Nd and S (b) Nd and Se (c) 

Nd and Te 
 

 
 
Fig. 14. Calculated partial density of states for f-states for (a) Nd and S (b) Nd and Se (c) 

Nd and Te 
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All above discussion regarding electronic properties is in good agreement with previously 
published theoretical results on electronic properties of neodymium chalcogenides using LSDA+U 
method by Antonov et al [5], justifying our predictions on electronic properties using GGA-PBE 
approximation.  

 
 
4. Conclusion 
 
In Conclusion, First principle method has been used to study the structural, elastic and 

electronic properties of NaCl type compounds, NdX, X=S, Se and Te. The following conclusions 
have been drawn from the calculations; 

Calculations indicate that the present values of equilibrium lattice constant, a0 and bulk 
moduli, B0 are in good agreement with available literature values. 

The present calculations provide reliable values of elastic moduli at absolute zero 
temperature and zero pressure for B1 structured neodymium monochalcogenides with the accuracy 
of the PBE-GGA exchange-correlation functional.  

The Young’s modulus, shear modulus, Poisson’s ratio, Debye temperature, sound velocity, 
Grüneisen parameter and other elastic properties have also been calculated for these compounds at 
ambient pressure for the first time.  

The present calculations provide reliable description of total charge densities and density 
of states for neodymium chalcogenides.  

So for as electronic conductivity of these compounds is concerned, p-states of Nd are 
responsible for the electronic conductivity in the three compounds and S (or Se or Te) p-like states 
in NdS (or NdSe or NdTe) have small contribution to electrical conductivity. 

The above facts are relevant in connection with the possibility of originating a semi-
metallic behavior of studied compounds.  
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