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Fröhlich electron-phonon interaction terms are derived, in the frame of dielectric 
continuum model, for a core-shell nanocolumn cylindrical heterostructure made of 
anisotropic uniaxial semiconductors, with optical axis along the heterostructure axis. The 
electron-phonon coupling functions were obtained in an analytical closed form, which 
allowed us to consider the polaron problem in such type of heterostructures. Numerical 
results, for a wurtzite GaN/AlN heterostructure, are presented. 
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1. Introduction 
 
Understanding the electron-phonon interaction, or Fröhlich interaction, in nanometric 

structures is of great importance, particularly in the case of III-nitride semiconductors, where it is 
known that electron-optical phonon coupling plays a main role in determining the mobility of free 
charge carriers. Most of the studies on Fröhlich interaction in nanostructures are based on the 
dielectric continuum (DC) model [1]. Some features of optical phonon spectra and electron-optical 
phonon coupling in q-1D wurtzite-type semiconductor systems were described in the frame of  DC 
model [2-4]. The interface phonon modes and their coupling with conduction band electrons in 
core-shell wurtzite quantum wires were studied in [4]. The full spectrum of optical phonons as 
well as their interaction with electrons in a quantum wire and a nanotube made of wurtzite 
semiconductors were investigated in [5] and [6], respectively.  

Recently, the successful growth of GaN/AlN core-shell nanowire heterostructure was 
reported [7]. The aim of this paper is to investigate confinement effects on optical phonons and 
electron-phonon interaction in such type of core-shell nanowire heterostructures, made of 
anisotropic uniaxial semiconductors. It is organized as follows: the DC model appropriate for use 
with the considered system is introduced in section 2 and the full optical phonon is obtained. Then, 
Fröhlich Hamiltonian is obtained and discussed in section 3. Numerical results carried out in the 
case of GaN/AlN core-shell nanowire cylindrical heterostructure are presented and discussed.   

 
2. Phonon Hamiltonian 
 
We consider a type I cylindrical core-shell heterostructure having the radii and  

 made of two uniaxial anisotropic polar materials with the optical axis directed along 
the axis of the heterostructure. We work in the frame of the dielectric continuum (D.C.) model [1], 
restricting ourselves to the case of polar crystals having the optical phonon field described by a 3D 
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real vector field. The numerical results presented in this paper are restricted to the case of 
GaN/AlN heterostructure, but our method allows one to investigate the properties of optical 
phonons in type I core-shell heterostructures made of wurtzite-type or layered semiconductors. 

According to the uniaxial symmetry involved, the equations of the model are written in 
terms of three vector fields ( ),( tru rr

-the optical phonon field, ),( trP rr
-the polarization field and 

),( trE rr
-the electric field): 
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where the index α corresponds to a direction that is either parallel ( )|| =α or orthogonal 
)( =⊥α to the optical axis. With the β -coefficients in eqs. (1,2), a diagonal form of the dielectric 

tensor is obtained [8], with the components: 
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where, )(∞αε , and are the high frequency dielectric constant of the corresponding 
material, the transverse phonon mode frequency and the longitudinal phonon mode frequency 
along the principal direction 

αωTO
αωLO

α , respectively. 
In the electrostatic approximation, starting from the eqs. (1) and (2), one can obtain the relation: 
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and, 

0)3(2 =Φ∇ , for 2R>ρ ,       (7) 
 

where, we have denoted . ( ) 2/12
2

2
1 xx +=ρ

In terms of the cylindrical coordinates ( )ϕρ ,, z  and considering the usual electrostatic 
boundary conditions at the interfaces, the electrostatic potential in the domains of the 
heterostructure is given by the expressions: 
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)()()2( zYzf mm = if ; in all the above expressions and are Bessel 

functions of the first and the second kind , while 
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)(x (K mI m , and are the modified Bessel 

functions of the first and the second kind, respectively.  

)x

By considering periodic boundary conditions along the optical axis of the system we obtain: 
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is the length of the heterostructure. L
Then, the dispersion law for optical phonons of the heterostructure is given by: 
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The Hamiltonian of the free optical phonons of the heterostructure, , is obtained by starting 
with the following expression [5] for the energy density of the free optical phonons (j=1,2): 

phH
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where  is the )( j

αΠ α -component of the momentum density canonically conjugated to the 

corresponding component of the field )( jur . 
In order to obtain the contributions of all types of phonons to , given by: phH
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all the fields in eq. (14) will be developed in terms of the eigenvectors of the phonon field, which 
verify the orthogonality relation [6]: 
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where, without loss of generality,  are considered to be real quantities, depending on )(μλmql m  and 

q ;  and  are the annihilation and creation operators for the phonon mode ()(μ
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For fixed m, the index l labels the distinct solutions of eq. (12), while μ is the character index. 
Conventionally, we will choose μ = 1 for quasi-transverse modes confined in the core (q-TO1), 
μ = 2 for quasi-longitudinal modes confined in the core (q-LO1), μ = 3 for quasi-transverse modes 
confined in the shell (q-TO2), μ = 4 for quasi-longitudinal modes confined in the shell (q-LO2),  
μ = 5,6 for interface modes, and μ = 7 for surface modes. The operators  and  obey 
typical Bose commutation relations: 
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By collecting the results (17), (19) and (20) in eqs. (14) and (15) and considering (16) with 
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the free optical phonon Hamiltonian of the heterostructure: 
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3. Fröhlich Hamiltonian 
 
Next, we derive the Hamiltonian describing the interaction between the conduction 

electrons and the optical phonon field (Fröhlich interaction). This interaction is written as:  
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It is induced by both types of polarization charges which contribute to the electrostatic 
potential, the volume charges, and the interface charges; in eq. (22)  is the electron charge and e

)(rrΦ  is the electrostatic potential including the above specified contributions.  
By taking into account the forms (8-10) for the electrostatic potential, the development 

(17) of the phonon vector field and the expression of the constant  indicated above (eq.(20)), 
the electron-phonon interaction Hamiltonian is obtained in the form: 
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where the electron-phonon coupling functions are given by,  
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Fig.1. Electron-phonon coupling functions  and  (a) and, respectively, 

 and  (b) for a GaN/AlN cylindrical heterostructure with R1/R2=0.85. 
The values of |q|R2 where the character is changing from a confined mode to a 
surface/interface mode are marked with vertical dash-dotted lines. Coupling functions are 
plotted in black for m=0, in blue for m=1 and orange for m=2. Solid lines correspond to  
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                                   l=1, while dashed lines correspond to l=2. 
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Numerical results have been obtained by considering the necessary material parameters for 
GaN and AlN indicated in [9]. Unlike the case of isotropic semiconductors, the coupling 
coefficients corresponding to both quasitransverse (q-TO) modes (confined either in the GaN core, 
or in the AlN barrier of the heterostructure) are not zero (Fig.1a). However, except for q-TO1 
mode with m=0, l=1, their values are much less than their counterparts for quasilongitudinal or 
interface/surface modes (Fig.1b). As also seen in the case of a nanowire [5] or nanotube [6] made 
of anisotropic uniaxial materials, quasitranverse modes with m=0, l=1 change their character into 
that of the corresponding surface (in the case of q-TO2) or interface (in the case of q-TO1) mode, 
irrespective of the R1/R2 ratio. In figure 1a the |q|R2 value at which this effect occurs for the q-TO1 
mode is marked by the vertical dash-dotted line. The coupling coefficients are continuous across 
the transition point. The same is true for q-LO2 modes, which change into interface modes 
(Fig.1b, transition point marked with dash-dotted line). But in this case the position of the 
transition point and the m-value of the q-LO2 mode for which the effect occurs depend on the 
R1/R2 ratio.  
 

3.1 Polaron 
 
In the effective mass approximation, the Hamiltonian of the conduction band electron can 

be written as (j=1,2): 
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The eigenstate of the electron kMs , with the envelope wave function: 
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depends on the following quantum numbers: - the wave number, with values determined by 
periodic boundary conditions along the optical axis, 

k
M  - azimuthal quantum number 

( ) , s – radial quantum number, corresponding to s-th zero in ,...2,1,0 ±±=M 2R=ρ  of the radial 
envelope function: 
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The effects of electron-optical phonon interaction are described by the Hamiltonian: 
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bath; by considering phonon emission processes, we have obtained  the free polaron energy in the 
2-nd order of Rayleigh-Schrödinger perturbation theory as: 
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In eq. (30) the following notation was used: 
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with the intermediate state ),,(1,, lmqsmqk ph⊗−−=Ψν . Then, the polaron self-energy Es 

and its mass Mp can be obtained, starting from eq. (30), as: 
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Fig. 2. Self-energy (solid line) and effective mass (dashed line) of the polaron in a 
GaN/AlN core-shell nanocolumn cylindrical heterostructure as functions on the core GaN  
                                                           radius (R1/R2=0.85). 

 
 

In Fig.2 the values of polaron self-energy and its effective mass as a function of the GaN 
core radius R1 are presented; all the phonon branches with m=0,1,2, l=1,2 and the electronic states 
with M=0,1,2 and s=1,2,3 were included in calculations. The considered R1/R2 ratio was 0.85. Both 
Es and Mp depends significantly on the core radius for hetersotructures with R1<12 nm.  
 
 

4. Conclusions 
 
Using an appropriate form of the energy density of the optical phonon system and the 

orthogonality relation verified by the eigen-vectors of the optical phonon field, the optical phonon 
Hamiltonian for a core-shell nanowire cylindrical heterostructure made of uniaxial semiconductors 
was obtained, as well as the form of the interaction Hamiltonian of optical phonons with a 
conduction band electron.  The electron-phonon coupling functions, for all types of phonons were 
obtained in an analytical closed form, which allowed to consider the free polaron problem in this 
type of heterostructure. We found that the contribution of interface/surface phonons is similar in 
magnitude with that of quasilongitudinal phonon modes and increases with the reduction of the 
core radius, if the R1/R2 ratio is kept constant. As an effect of anisotropy, the electron-
quasitransverse phonon modes coupling functions have non-zero values; however, these values are 
smaller than those corresponding to quasi-longitudinal or interface/surface modes. 
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