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Quantitative structure activity relationship (QSAR) studies of twenty four 5-cyano, N1, 6-
disubstituted, 2-thiouracil derivatives were performed for their central nervous system 
(CNS) depressant (locomotor) activity using VlifeMDS3.5 software. Partial least square 
(PLS) linear regression analysis coupled with stepwise variable selection method was 
applied to derive QSAR models which were further validated for statistical significance 
and predictive ability by internal and external validation. The best QSAR model was 
selected, having correlation coefficient r2 = 0.9014 and cross validated squared correlation 
coefficient q2 = 0.8120 with external predictive ability of pred_r2 = 0.6692. The QSAR 
model indicated that the vdWSurfaceArea (van der Waals surface area of the molecule), 
dipole moment, YcompDipole (y component of the dipole moment) and T_2_F_1 (count 
of number of double bounded atoms (i.e. any double bonded atom, T_2) separated from 
fluorine atom by 1 bond in a molecule) were the important determinants for CNS 
depressant (locomotor) activity.  
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1. Introduction 
 
The thirst for discovery of new chemical entities of therapeutic interest has been continued 

since for many years to medicinal chemistry experts. In recent years, a substantial progress that has 
been made by computational chemistry led new challenges to drug discovery by rational process. 
As an application of computational chemistry, nowadays, quantitative structure activity 
relationship (QSAR) has become more popular tool for the prediction of biological activities of 
molecules. The quantitative relations between the chemical properties of a molecule 
(physicochemical, structural and conformational) and the biological response assist to understand 
the driving forces for the drugs action and helps to predict the biological activities of newly 
designed analogues statistically thus, contributing to the drug discovery processes [1].  

During past two decades, a significant attention has been focused on design and 
development of pyrimidine heterocyclic compounds of biological interest [2-7]. As pyrimidine 
constitutes the base for thiamine, uracil and cytosine nitrogen bases which are building blocks of 
the nucleic acids, there has been growing interest in this particular heterocycle. Many papers have 
reported QSAR investigations on the derivatives of pyrimidine [8-12].  

In this context, a series of twenty four 5-cyano, N1, 6-disustituted, 2-thiouracil derivatives 
were synthesized by the tertiary condensation (Fig. 1) of aryl-substituted thiourea, appropriate 
aldehyde  and ethylcyanoacetate catalyzed by potassium carbonate in presence of small amount of 
ethanol using microwave irradiation technique [13]. The structures of the compounds were 
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confirmed by FTIR and NMR spectroscopy studies. The synthesized thiouracil derivatives were 
further evaluated for CNS depressant (locomotor activity) in mice using actophotometer. The 
antimicrobial and antinociceptive activities of these compounds have been already reported [14, 
15]. All thiouracil derivatives produced significant decrease (53.92 ± 1.90 − 89.50 ± 1.66) in the 
locomotor activity in mice. A log-dose response relationship was established and the pEC50 values 
for all compounds were determined. These values were further used as a data set (Table 1) to 
obtain various QSAR models.   
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Fig. 1 Scheme of synthesis of thiouracil derivatives 

 
Table 1 Nature of R group and pEC50 values of thiouracil derivatives. 
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Compound Code  Nature of R1 Nature of R2 pEC50 (-log EC50 or 

1/ EC50 ) 
μmol 

P1 Phenyl Phenyl 0.5534 
P2 Phenyl 4-hydroxy phenyl 0.7598 
P3 Phenyl 4-methoxy phenyl 0.8260 
P4 4-Chloro-phenyl Phenyl 0.5678 
P5 4-Chloro-phenyl 4-hydroxy phenyl 0.6683 
P6 4-Chloro-phenyl 4-methoxy phenyl 0.7735 
P7 4-Methyl-phenyl Phenyl 0.7927 
P8 4-Methyl-phenyl 4-hydroxy phenyl 0.7749 
P9 4-Methyl –phenyl 4-methoxy phenyl 0.7761 
P10 4-Methoxy-phenyl Phenyl 0.7958 
P11 4-Methoxy-phenyl 4-hydroxy phenyl 0.7657 
P12 4-Methoxy-phenyl 4-methoxy phenyl 0.8535 
P13 4-Fluoro-phenyl Phenyl 0.5712 
P14 4-Fluoro-phenyl 4-hydroxy phenyl 0.6928 
P15 4-Fluoro-phenyl 4-methoxy phenyl 0.7814 
P16 2, 4-dimethyl-phenyl Phenyl 0.7975 
P17 2, 4-dimethyl-phenyl 4-hydroxy phenyl 0.7601 
P18 2, 4-dimethyl-phenyl 4-methoxy phenyl 0.8045 
P19 3-Methyl-phenyl Phenyl 0.7629 
P20 3-Methyl-phenyl 4-hydroxy phenyl 0.7610 
P21 3-Methyl-phenyl 4-methoxy phenyl 0.7667 
P22 4-Nitro-phenyl Phenyl 0.5581 
P23 4-Nitro-phenyl 4-hydroxy phenyl 0.6638 
P24 4-Nitro-phenyl 4-methoxy phenyl 0.7899 
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   As a part of ongoing research to design novel compounds with potent locomotor activity, 
this work was aimed to establish quantitative relationship between CNS depressant (locomotor) 
activity and 2D (two dimensional) descriptors of 5-cyano, N1, 6-disubstituted, 2-thiouracil 
derivatives. Partial least square (PLS) linear regression method was used to generate various 
QSAR models. Three best models were selected and validated for their regression coefficient, 
internal and external predictive ability and statistical significance.  All models were further 
interpreted to investigate the contribution of various descriptors in CNS depressant (locomotor) 
activity. 

 
 
2. Experimental 
 
2.1. Biological data 
 
A data set of pEC50 values (locomotor activity) of twenty four compounds was used for 

2D QSAR studies (Table 1). The micromolar concentrations of thiouracils required to produce 
fifty percent response (EC50) in animals were converted to negative logarithmic values (pEC50) for 
undertaking the QSAR study. 

 
2.2. Modeling software  
 
All twenty four compounds were built on workspace of molecular modeling software 

VLifeMDS (Version 3.5 VLife Sciences Technologies Pvt Ltd., Pune, India). The QSAR models 
were built on the same software. 

 
2.3. Optimization of molecules  
 
All molecules were batch optimized for the minimization of energies using MMFF (Merck 

Molecular Force Field) in MOPAC module of VLifeMDS software until the root mean square 
(rms) gradient reached value 0.001 kcal/mol A° before they were undertaken for 2D QSAR 
studies.  

 
2.4. Selected descriptors 
 
Most stable structure for each compound was generated after energy minimization and 

used for calculating various physico-chemical descriptors like thermodynamic, steric and 
electronic. The various descriptors selected for 2D QSAR were vdWSurfaceArea (van der Waals 
surface area of the molecule), –vePotentialSurfaceArea (total van der Waals surface area with 
negative electrostatic potential of the molecule), +vePotentialSurfaceArea (total van der Waals 
surface area with positive electrostatic potential of the molecule) dipole moment, YcompDipole (y 
component of the dipole moment), element count, slogP, path count, cluster, distance based 
topological indices, connectivity index, hydrophobic and hydrophilic areas like 
SAMostHydrophilic (Most hydrophilic value on the vdW surface by Audry Method using Slogp), 
SAMostHydrophobicHydrophilic Distance (distance between most hydrophobic and hydrophilic 
point on the vdW surface by Audry Method using Slogp), SAHydrophilicArea (vdW surface 
descriptor showing hydrophilic surface area by Audry Method using SlogP) and 
SKMostHydrophilic (Most hydrophilic value on the vdW surface by Kellog Method using Slogp), 
radius of gyration, Wiener’s index, moment of inertia, semi- empirical descriptors, HOMO 
(Highest occupied molecular orbital), LUMO (lowest unoccupied molecular orbital), heat of 
formation and ionization potential. Besides these all alignment independent descriptors were also 
calculated. The hydrophobic descriptors govern the movement of a drug molecule across the 
biological membranes in order to interact with the receptor by van der Waals binding forces 
whereas both electronic and steric descriptors influence the affinity of a drug molecule necessary 
for proper drug- receptor interaction.  
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2.5. Generation of training and test set of compounds  
 
The optimal training and test sets were generated by either random selection method or the 

sphere exclusion algorithm. A commonly used ratio of training to validation objects (test set), 
which was also adopted in this work, is 80%: 20% [16]. However, rational splitting was 
accomplished by applying a sphere-exclusion type algorithm [17-20]. In classical sphere-exclusion 
algorithm the molecules are selected whose similarities with each of the other selected molecules 
are not higher than a defined threshold. Each selected molecule generates a hyper-sphere around 
itself, so that any molecule inside the sphere is excluded from the selection in the train set and 
driven toward the test set. The number of compounds selected and the diversity among them can 
be determined by adjusting the radius of the sphere (R) [17].  

 
 
2.6. Statistical computation 
 
All the calculated descriptors were considered as independent variable and biological 

activity as dependent variable. VLife Molecular Design Suite (VLifeMDS software was used to 
generate QSAR models by Partial Least Squares Regression (PLSR) method analysis. Statistical 
measures used were the number of compounds in regression n, the regression coefficient r2, the F–
test (Fischer’s value) for statistical significance F, the cross–validated correlation coefficient q2 
and the standard error of estimation r2 and q2. The regression coefficient r2 is a relative measure of 
fit by the regression equation. It represents the part of the variation in the observed data that is 
explained by the regression. The correlation coefficient values closer to 1.0 represent the better fit 
of the regression. The F–test reflects the ratio of the variance explained by the model and the 
variance due to the error in the regression. High values of the F–test indicate that the model is 
statistically significant. The predictive ability of the generated correlations was evaluated by cross 
validation method employing a ‘leave–one–out’ scheme. Validation parameters considered were 
cross validated q2. The predictive ability of the selected model was also confirmed by external 
validation of test set compounds which is also denoted with pred_r2.  

 
 
3. Results and discussion 
 
3.1. Model generation  
 
QSAR investigations of the 5-cyano, N1, 6-disustituted, 2-thiouracil analogues series 

resulted in several QSAR equations. Some statistically significant QSAR models were chosen for 
discussion. 
pEC50 = + 0.0603 Dipole Moment  
  + 0.0019 vdWSurfaceArea  
  − 0.1784                                                           (MODEL 1) 
 
n = 19, Test Set Size = 5 ((P6, P8, P10, P15 and P24), r2 = 0.8523, q2 = 0.8152, F = 98.1114, r2 se 
= 0.0381, q2 se = 0.0426, pred_r2 = 0.4926, pred_r2se = 0.0496, R2 = 0.8109. 
 
pEC50 = + 0.0021 vdWSurfaceArea  
              + 0.0657 DipoleMoment  
              + 0.0625 T_2_F_1  
              + 0.0079 YcompDipole  
              −0.2770                                         (MODEL 2) 
 
n = 19, Test Set Size = 5 ((P9, P13, P18, P23 and P24), r2 = 0.9014, q2 = 0.8120, F = 73.1247, r2 se 
= 0.0295, q2 se = 0.0407, pred_r2 = 0.6692, pred_r2se = 0.0588, R2 = 0.8480.  
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pEC50 = + 0.0028 –vePotentialSurfaceArea  
              + 0.0022 SAHydrophilicArea  
              + 17.8277 SAMostHydrophilic  
              − 0.0351 T_N_O_5  
              + 0.0487 DipoleMoment  
              − 0.0016 Quadrupole3  
              + 0.0954 SAMostHydrophobicHydrophilicDistance  
              + 0.0018 +vePotentialSurface Area  
              − 0.2488 SKMostHydrophilic  
              + 2.1505                                                     (MODEL 3) 
n = 18, Test Set Size = 6 (P8, P10, P15, P18, P19 and P21), r2 = 0.9676, q2 = 0.8377, F = 
139.5127, r2 se = 0.0195, q2 se = 0.0436, pred_r2 = 0.4807, pred_r2se = 0.0506, R2 = 0.9008. 

In these equations n is the number of molecules (Training set) used to derive the QSAR 
models, r2 is the regression coefficient, q2 is the cross-validated r2 (by the leave-one out method), 
pred_r2 is the predicted r2 for the external test set, F is the Fisher ratio, q2 se and r2 se are the 
standard errors of cross-validated coefficient and regression coefficient respectively, pred_r2se is 
the standard error of predicted r2 for the external test set and R2 is the correlation coefficient for 
observed vs. predicted biological activity. 

The QSAR models 1 and 2 were obtained by random method of training and test data 
selection [16], where 80% (19) of the total molecules were selected for training set while 
remaining were selected as test set molecules (5). The QSAR models 3 was obtained by sphere 
exclusion method [17] of training and test data selection, where 18 of the total molecules were 
selected for training set while remaining were selected as test set molecules (6). 

 
3.2. Validation of QSAR models 
 
All three QSAR models have shown good correlation between their corresponding 

descriptors and biological activity. Also large values of F indicated that the model fit in all cases 
was not a chance occurrence and all models were statistically significant [21]. However, a QSAR 
model is considered to be predictive, if the following conditions are satisfied: pred_r2 > 0.5 and q2 
> 0.6 [22-25]. Table 2 shows comparative predicted activities along with residuals by three 
models. Figures 2, 3 and 4 represents the fitness plots of observed vs. predicted biological activity 
for the models 1, 2 and 3 respectively. The model 3 has excellent goodness of fit (r2 = 0.9676), 
good internal predictive ability (q2 = 0.8377) and excellent fitness plot (R2 = 0.9008) but poor 
ability to predict the activities of test set molecules (pred_r2 = 0.4807) which have not been 
included to build the QSAR model. The model 1 has also good correlation coefficient (r2 = 
0.8523), good internal predictive ability (q2 = 0.8152) but slightly poor external predictive ability 
(pred_r2 = 0.4926) with fitness plot of (R2 = 0.8109). However, model 2 shows excellent 
correlation coefficient (r2 = 0.9014), good internal predictive ability (q2 = 0.8120) and fitness plot 
(R2 = 0.8480). Further, it has better external predictive ability for the test set molecules (pred_r2 = 
0.6692). From the above equations, it was also observed that 85.23 % (r2 = 0.8523), 90.14 % (r2 = 
0.9014) and 96.76 % (r2 = 0.9676) of the variation in the biological activity was accounted for by 
the parameters used in the equations 1, 2 and 3 respectively. This signifies that model 2 can be 
considered as a most predictive and best model among all the three QSAR models evaluated. 
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Table 2 Comparative observed and predicted activities (LOO) of thiouracil derivatives by QSAR models 
 

Predicted pEC50
* Compound Observed 

pEC50 Model 1 Residuals Model 2 Residuals Model 3 Residuals 
P1 0.5534 0.6119 -0.0585 0.5829 -0.0295 0.5574 -0.004 
P2 0.7598 0.7204 0.0394 0.7111 0.0487 0.7468 0.013 
P3 0.8260 0.7849 0.0411 0.8236 0.0024 0.8406 -0.0146 
P4 0.5678 0.6014 -0.0336 0.5792 -0.0114 0.5828 -0.015 
P5 0.6683 0.6815 -0.0132 0.6738 -0.0055 0.6618 0.0065 
P6 0.7735 0.7631 a 0.0104 0.7732 0.0003 0.7512 0.0223 
P7 0.7927 0.7556 0.0371 0.7838 0.0089 0.7684 0.0243 
P8 0.7749 0.7590 a 0.0159 0.7880 -0.0131 0.7578 a 0.0171 
P9 0.7761 0.8179 -0.0418 0.8316 a -0.0555 0.7576 0.0185 
P10 0.7958 0.7601 a 0.0357 0.7886 0.0072 0.7643 a 0.0315 
P11 0.7657 0.7560 0.0097 0.7847 -0.019 0.7512 0.0145 
P12 0.8535 0.8831 -0.0296 0.8872 -0.0337 0.8757 -0.0222 
P13 0.5712 0.5882 -0.017 0.6293 a -0.0581 0.5767 -0.0055 
P14 0.6928 0.6563 0.0365 0.7158 -0.023 0.6784 0.0144 
P15 0.7814 0.7118 a 0.0696 0.7653 0.0161 0.7144 a 0.067 
P16 0.7975 0.7448 0.0527 0.7367 0.0608 0.7911 0.0064 
P17 0.7601 0.7779 -0.0178 0.7829 -0.0228 0.7985 -0.0384 
P18 0.8045 0.8416 -0.0371 0.8565 a -0.052 0.8439 a -0.0394 
P19 0.7629 0.7449 0.018 0.7498 0.0131 0.7584 a 0.0045 
P20 0.7610 0.7138 0.0472 0.7127 0.0483 0.7536 0.0074 
P21 0.7667 0.8037 -0.037 0.7975 -0.0308 0.8406 a -0.0739 
P22 0.5581 0.5914 -0.0333 0.5791 -0.021 0.5777 -0.0196 
P23 0.6638 0.6307 0.0331 0.6114 a 0.0524 0.6642 -0.0004 
P24 0.7899 0.7317 a 0.0582 0.7459 a 0.044 0.8018 -0.0119 
 
* indicates predicted activity by leave one out cross validation; a indicates molecules of test set. 
 
 
 

 
 

Fig. 2 The plot of observed versus predicted activity for model 1 
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Fig. 3 The plot of observed versus predicted activity for model 2 
 
 
 
 

 
 

Fig. 4 The plot of observed versus predicted activity for model 3. 
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The descriptor data was further analyzed to check data spread by calculating the mean and 
standard deviation for all QSAR models. Table 3 shows uni-column statistics for the activity data 
of training and test set. 

 
Table 3 Uni-column Statistics for QSAR models 

 
Model 1 Uni-column Statistics for training set 

Column 
Name 

Average Max Min StdDev Sum   

Activity 0.7214          0.8535 0.5534          0.0964          13.7069         
Model 1 Uni-column Statistics for test set 

Column 
Name 

Average Max Min StdDev Sum   

Activity 0.7831          0.7958          0.7735          0.0096          3.9155          
Model 2 Uni-column Statistics for training set 

Column 
Name 

Average Max Min StdDev Sum   

Activity 0.7377          0.8535          0.5534          0.0885          14.0169         
Model 2 Uni-column Statistics for test set 

Column 
Name 

Average Max Min StdDev Sum   

Activity 0.7211          0.8045          0.5712          0.1006          3.6055          
Model 3 Uni-column Statistics for training set 

Column 
Name 

Average Max Min StdDev Sum   

Activity 0.7187          0.8535          0.5534          0.0982          12.9362         
Model 3 Uni-column Statistics for test set 

Column 
Name 

Average Max Min StdDev Sum   

Activity 0.7810          0.8045          0.7629          0.0164          4.6862          
 
 
The max of the test should be less than or equal to max of train set and the min of the test 

should be greater than or equal to min of train set. Table 3 indicated that in all cases the test set 
was interpolative i.e. derived within the min-max range of the train set. The mean and standard 
deviation of the train and test set provided insight to the relative difference of mean and point 
density distribution (along mean) of the two sets. In model 1 and model 3, the means of the test 
sets were higher than the train sets showed the presence of relatively more active molecules as 
compared to the inactive ones. Also in both the cases a relatively higher standard deviation in train 
sets indicated that training sets had widely distributed activity of the molecules as compared to the 
test sets [26].  

In model 2 the mean of the test set was slightly lower than the train set showed the 
presence of relatively slightly less active molecules as compared to the inactive ones. Also a 
relatively slightly higher standard deviation in test set indicated that test set has widely distributed 
activity of the molecules as compared to the training set [26]. 

 
3.3. Interpretation of QSAR models 
 
Model 1 
In this QSAR equation, the positive contribution of dipole moment on the biological 

activity indicated that the increase in dipole moment of molecule leads to better locomotor activity. 
The positive coefficient of vdWSurfaceArea showed that increase in vdWSurfaceArea is beneficial 
for the activity [26].  
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Model 2 
QSAR model 2 demonstrates that positive contribution of vdWSurfaceArea and dipole 

moment on the biological activity indicated that the increase in vdWSurfaceArea and dipole 
moment of molecule leads to better locomotor activity. The positive coefficient of YcompDipole 
showed that increase in YcompDipole is not detrimental for the activity. The next most important 
descriptor influencing activity variation is T_2_F_1 and is directly proportional to the activity. 
This descriptor indicates that increase in the count of number of double bounded atoms (i.e. any 
double bonded atom, T_2) separated from fluorine atom by 1 bond in a molecule will lead to 
positive effect on the activity [26].  

 
Model 3 
QSAR model 3 shows that positive contribution of –vePotentialSurfaceArea, 

+vePotentialSurfaceArea, SAMostHydrophilic, dipole moment, SAMostHydrophobicHydrophilic 
Distance and SAHydrophilicArea on the biological activity indicated that the increase in the values 
of these descriptors leads to better locomotor activity. The negative coefficient of Quadrupole3 
and SKMostHydrophilic showed that increase in the values of these descriptors is detrimental for 
the activity. The next most important descriptor influencing activity variation is T_N_O_5 and is 
inversely proportional to the activity. The negative coefficient of this descriptor indicates that, the 
decrease in the count of number of nitrogen atoms (single double or triple bonded) separated from 
any oxygen atom by 5 bonds in a molecule will lead to positive effect on the activity [26].  

 
4. Conclusions 
 
In the present investigation, all proposed QSAR models were statistically significant. 

However, model 2 could be considered as best one in terms of its excellent internal and external 
predictive abilities. According to model 2, the CNS depressant (locomotor) activity of 5-cyano, 
N1, 6-disubstituted, 2-thiouracil derivatives was positively contributed with electrostatic parameter 
like van der Waals surface area of the molecule, electronic parameters like dipole moment and Y 
component of Dipole moment and alignment independent descriptor T_2_F_1. Thus, from above 
QSAR investigations it could be concluded that electrostatic and electronic properties of thiouracil 
derivatives are mainly involved in eliciting CNS depressant (locomotor) activity.  
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