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New analytical heat transfer model for weak laser-
crystalline solids interaction 
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We propose a coherent mathematical model for laser processing of crystalline solids when the solid’s temperature variation 
is small (up to 100 K-300 K). In fact, we treat the heat equations for two major cases fulfilling our condition: i) the sample’s 
absorption coefficient is very small (e.g. ZnSe, GaAs,); and/or ii) the laser intensity is not very high. The condition of small 
temperature variations has two advantages: validates the assumption on thermal independence for optical and thermal 
parameters (such as thermal diffusivity, thermal conductivity, heat transfer coefficient and absorption coefficient) and the 
possibility to make use of the linear heat absorption coefficients hypothesis. We present a number of three theorems in 
order to help the experimentalists in their work in the field of thermal effects in laser-matter interaction.  
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1. Introduction 
 
In order to solve very “exotic” forms of the heat 

equation, we use the integral transform technique, which 
have been developing in the early ‘60s (Koshlyakov N. S. 
et all., 1964). Our models are more powerful than Green 
function method, Fourier series or perturbation methods.  
We are searching analytically and semi-analytically 
solutions of various heat equations.  Our semi-analytically 
solutions become analytically if we consider the first 10 
eigen-values for each spatial coordinate. The computer 
simulations show that using only the first 10 eigen-values, 
the solutions are so quickly convergent that the absolute 

error in determining the temperature field is about210−  K. 
We discuss five important theorems concerning the 
solutions of the heat equations for different situations in 
laser processing. The first theorem is due to interaction of 
a laser beam that has like intensity a combination of 
transverse modes TEMmn, and a homogenous solid target. 
The second theorem is a generalization of the first 
theorem, with the specification that the laser beam is 
moving. Theorem 3 is a powerful one, including quantum 
effects in classical heat equation such as the absorption of 
one, two, three and four photons. In this way, we obtain a 
semi-classical heat equation. We believe that our 
mathematical model could be of great help to people 
working in laser processing area. 

It is very easy to find out solutions to a heat equation 
considering the very simple models of interaction. As long 
as one faces realistic situations involving more 
complicated interaction models, the heat equations become 
more and more difficult to be solved [1, 2, 3].         

           We first discuss two approximations used for 
solving different heat equations [4, 5, 6, 7]. The first one 
treats the supposition of linearly approximation of the 
boundary conditions. If the flux across the surface is 
proportional to the temperature difference between the 

surface and the surrounding medium, so that it is given by 

( )0  –h T T where T  is the temperature of the sample, 

0T  is the temperature of the medium and h  is the transfer 

coefficient, the boundary condition is 

0( /  )  ( ) 0K T n h T T∂ ∂ + − = , where n  is the normal 

to the surface and K  is the sample thermal conductivity.  

If 0T T−  is not large (which is the basic assumption of 

the present article), one can apply the linear heat transfer 

approximation: 3
04  radh ETσ=  where σ  is the Stefan-

Boltzmann constant and E  is the emissivity of the 
surface.  

From experimental point of view the heat transfer 
coefficient should also contain the convection 
contribution, which in many cases becomes dominant over 
the radiation loses. For the convection heat transfer we can 
use the linear approximation. In this situation, both effects 
can be considered by an approximate value of a linear heat 

transfer coefficient: rad convh h h= + . 

The second approximation refers to the thermal 
independence of the optical and thermal parameters 
included in the heat equations. This is a very important 
assumption; if we consider the thermal dependence of the 
mentioned parameters, we are force to use numerical 
models.         

  
 
2. Theorem No. 1 
 
The heat equation in the case of laser irradiation of a 

homogeneous solid sample (cylinder with heighta  and 

radiusb  ) is: 
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(Where:γ  is the thermal diffusivity, k  is thermal 

conductivity, and ( , , , )A r z tφ  is the heat rate variation 

per unit volume and time). The boundary conditions are: 
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The “periodicity” conditions are in this case as 
follows: 
 

( ,0, , ) ( , 2 , , )T r z t T r z tπ= .              (3) 

 
The temperature T  is a function of ( , , , )r z tφ  and is 

defined as the temperature variation. We have therefore
( , , ,0) 0T r zφ = . 

If we consider the case of a continuous-wave (cw) 

CO2 laser source operated in the transversal modes{ }mn , 

we have the following solution of Eq. (2): 
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Here: 
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Where 
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Here
2 2 2( )ilj il jβ γ µ λ= + , ( )0h t t−  is the Heaviside 

function and 0t  the exposure time.  The functions 

( , )r ilK rµ , (2 , )K lφ φ , (2 1, )K lφ φ−  and ( , )z jK zλ  

are eigen-functions corresponding to the eigen-values ilµ , 

2l , 2 1l − , jλ . We have ( , ) ( )r il l ilK r J rµ µ= ⋅ , 

(2 , ) cos( )K l lφ φ φ= , (2 1, ) sin( )K l lφ φ φ− =  and

( , ) cos( ) ( / ) sin( )z j j j jK z z h k zλ λ λ λ= ⋅ + ⋅ .            

Proof of theorem No. 1: 
The heat equation inside cylindrical samples (Eq. (1)), was 
solved using the integral operators’ method. To eliminate 

differentiation with respect toϕ , we set
2 2/D Tφ φ= ∂ ∂ . 

The auxiliary function ( ) ( ) ( ), 1/ ,K Kφ φγ φ π γ φ=  

must satisfy the equation 2 2 2( / ) 0K l Kφ φφ∂ ∂ + =  and 

the periodicity condition
0 2

K Kφ φ
φ φ π= =

= . 

The solution of these equations is
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Applying ( ),K φ γ φ , Eq. (1) becomes 
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Where: 
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To eliminate differentiation with respect tor , we set
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Applying ( ),r ilK rµ  Eq. (8) becomes 
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where ( ) ( ) ( )
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1
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2
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The function is 

( ) ( ) ( ) ( )j
ˆ 1/  cos ( ) / sin )z j j jK C z h k zλ λ λ= +  

where ( )2

0

ˆ ,  
a

j z jC K z dzλ= ∫  and jλ  is given by

( ) ( )2cot( ) / /j j ja k h h kλ λ λ= − . 

Applying ( )ˆ ,z jK zλ  Eq. (9) becomes: 
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Using the direct and inversion Laplace transform 

technique one can solve Eq. (10) and obtain the solutions 
of the first theorem. An application to the theorem No. 1 is 
show in Fig. 1. 
 

 
 

Fig. 1 The thermal field generated in bulk Cu by a cw 
CO2 laser source operating in TEM03 at 10 W, stationary  

   ( 0v = ) on the sample surface, irradiation time 10 s. 
 
 

3. Theorem No. 2 
 
We next consider the case of a laser beam in motion 

on the Cu sample surface with a velocityv . The 

components of the velocity along the two axes are xv and

yv , respectively. A new reference system with the 

coordinates 0 xx x v t= + ⋅ and 0 yy y v t= + ⋅  is 

introduced and adapted correspondingly to the source 
term. 

We perform calculations for 10xv =  mm/s, 0yv = , 

10t =  s (Fig. 2) and 20t =  s (Fig. 3). As in the case 
presented in Fig. 1, the cw CO2 laser beam was operating 
in the TEM03 transversal mode at an output power of            
10 W.   

By comparing Fig. 1 to Fig. 2 and Fig. 3, we first 
notice that the two temperature maxima are present in all 
cases. The main difference is due to the depth of the 
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minimum between the two peaks, which is decreasing 
from Fig. 1 to Fig. 3. The differences between the 
minimum and maximum temperatures are diminishing and 
the plateau between the two maxima moves to higher 
temperatures. This observation is congruent with a 
uniform heating of the sample as an effect of the laser 
beam movement. This effect is more pronounced in the 
case of a higher velocity of the laser beam. 

 
 

 
 
Fig. 2 Thermal field generated in bulk Cu by a cw CO2 
laser source operating in TEM03 at 10 W scanning the 

sample surface with 10xv =  mm/s irradiation time 10 s 

 
 
 
 
 
 

 

Fig. 3 Thermal field generated in bulk Cu by a cw CO2 
laser source operating in TEM03 at 10 W scanning the 
sample surface with 10xv =  mm/s irradiation time 20 s. 

 
  

The proof of the second theorem is identical with the 
proof of the first theorem with the mention that we have to 

make the changes: 0x x→
 
and 0y y→ . 

 
 

4. Theorem No. 3 
 
The macroscopic heat equation is employed to 

investigate the temperature field in a (InSb) semiconductor 
exposed to a CO2 laser with a Gaussian spatial profile and 
a rectangular nanosecond pulse. The sample is supposed to 
be homogeneous and therefore, there is no angular 
dependence on the temperature variation. The equation 
describing the heat diffusion inside a cylindrical solid 
sample irradiated by a laser beam centred to the probe is: 

 

   

( )2 2

2 2

, , ,1 1 A r z tT T T T

r r r z t k

ϕ
γ

∂ ∂ ∂ ∂+ + − = −
∂ ∂ ∂ ∂

  (11)              

 
In the presence of one-, two-, three- and four- photon- 

absorption, described by coefficientiα , the change in the 

light intensity as it passes through the sample is: 
 

2 3 4
1 2 3 4

dI
I I I I

dx
α α α α= − − − −         (12) 

 
In order to consider the multi-photon absorption, the heat 
rate per unit volume and time is calculate using the Beer’s 
law: 

 
2 3 4

1 00 2 00 3 00 4 00 0( , , ) ( ( , ) ( , ) ( )) ( ( ) ( ))SA r z t I r z I r z I I r z h t h t tα α α α δ= ⋅ + + + + ⋅ − −         (13) 

 

Where: 0t  is the pulse duration, ( )h t  is the step function 

and Sr  is the surface absorption coefficient. 

The solution of the heat equation is: 
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where 
2 2 2( )ij i jθ γ µ λ= +  and 
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iC and jC  are normalizing coefficients. The eigen-values 

iµ  and jλ  correspond to the eigen-functions ( , )r iK r µ  

and ( , )z jK z λ . The integral operators corresponding to 

the eigen-functions 0( , ) ( )r i iK r J rµ µ= ⋅  and 

( , ) cos( ) sin( )
j

h
z j j jkK z z zλλ λ λ⋅= + ⋅  are normalized 

by the following coefficients: 
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And 
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The eigen-values iµ  and jλ  are determined from the 

boundary conditions. 
 
5. Results and discussion regarding theorem  
    no. 3 
 
In the previous section, the heat diffusion equation 

was analytically solved in order to determine the 
temperature field inside a semiconductor sample. One 
cylindrical InSb sample of radius: 10b =  mm and 

thickness 4a =  mm, was considered. The sample was 
supposed to be irradiating by a 5 ms TEM00 CO2 laser 
beam of 100 W power and 2 mm width. The InSb 
sample’s characteristics are mass density5.78ρ =  g/cm3 

thermal conductivity 16k =  W/mK specific heat
0.144c = J/g °C absorption coefficient 0.64α =  mm-1 

two-photon absorption coefficient 15β = cmMW-1. A 

typical temperature distribution versus time and radial 
coordinate, neglecting the two absorption coefficient (

0β = ), for a 5 ms TEM00 CO2 laser beam is shown in 

Fig. 4. The temperature distribution reaches its maximum 
in the sample centre, in the point where power density has 
its maximum. Our simulation shows that if we consider 

15β =  cmMW-1 the temperature field increases with 

3.34% in respect to the maximum temperature field of the 
0β = case (Fig. 4).   

 
Fig. 4 Computed temperature field inside InSb probe 
exposed for 5 ms to a 100 W TEM00 CO2 laser beam 

 
 

6. General discussions 
 
There are many methods for measuring the thermal 

fields in laser-matter interaction but most of them require a 
complex mathematical apparatus as well very complicated 
experimental setup.  

Our paper presents a direct and powerful 
mathematical theory to compute the thermal field. The 
solving procedure is base on applying the integral 
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transform technique, which was develop in 1960, by the 
Russian school of theoretical physics [1]. 

The comparison with data from literature [2, 3] is in 
good agreement with our model [4, 5, 6, 7]. We conclude 
that our analysis is quite general, but its application fails as 
soon as the material is melt and vaporize under irradiation. 

At the end of our conclusions, we should mention that 
there are other models competitive with our model. These 
models are in general more complicated, but may be use in 
parallel with our model in order to extract more 
information [8]. 

For example, in reference [8] it is avoid the Fourier 
differential heat equation and it is used the Duhamel’s 
principle which leads to a convolution, integrated 
analytically by using a Taylor series approximation.  

We conclude that our model [9, 10, 11, 12] is direct 
and powerful enough to give rapidly and correctly the first 
information on the temperature distribution for laser-
material interaction.   
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