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New analytical heat transfer model for weak laser-
crystalline solidsinteraction

R. MEDIANU", M. OANE, G. GEORGESCU
National Ingtitute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele, 077125 Romania

We propose a coherent mathematical model for laser processing of crystalline solids when the solid’s temperature variation
is small (up to 100 K-300 K). In fact, we treat the heat equations for two major cases fulfilling our condition: i) the sample’s
absorption coefficient is very small (e.g. ZnSe, GaAs,); and/or ii) the laser intensity is not very high. The condition of small
temperature variations has two advantages: validates the assumption on thermal independence for optical and thermal
parameters (such as thermal diffusivity, thermal conductivity, heat transfer coefficient and absorption coefficient) and the
possibility to make use of the linear heat absorption coefficients hypothesis. We present a number of three theorems in
order to help the experimentalists in their work in the field of thermal effects in laser-matter interaction.
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1. Introduction surface and the surrounding medium, so that iiviergby

h (T —T,)whereT is the temperature of the sample,
In order to solve very “exotic” forms of the heat ( 0) P P
equation, we use the integral transform technigui@ch T, is the temperature of the medium ahds the transfer
haVﬁ been (;eveloplngdmI the early ‘60s (Ko]:sr:lyﬁkb\s. coefficient, the boundary condition is
et all., 1964). Our models are more powerful than Green _ _ .

function method, Fourier series or perturbation hods. K@T/a n)+h (T T0) =0, where N is the normal
We are searching analytically and semi-analyticallyto the surface an&K is the sample thermal conductivity.
solutions of various heat equations. Our semiydically If T—T, is not large (which is the basic assumption of

solutions become analytically if we consider thestfilO th t articl v the i ¢
eigen-values for each spatial coordinate. The cdenpu € present article), one can apply the linear er

simulations show that using only the first 10 eigaiues, ~ approximation:h, =40 ET; where 0 is the Stefan-
the solutions are so quickly convergent that theohlte  gitzmann constant andE is the emissivity of the
error in determining the temperature field is a107? K. surface.

We discuss five important theorems concerning the  From experimental point of view the heat transfer
solutions of the heat equations for different ditwes in  coefficient should also contain the convection
laser processing. The first theorem is due to autitwn of  contribution, which in many cases becomes dominset

a laser beam that has like intensity a combinattbn the radiation loses. For the convection heat teansé can
transverse modes TEM and a homogenous solid target. use the linear approximation. In this situationthbeffects
The second theorem is a generalization of the firsttan be considered by an approximate value of atdiheat
theorem, with the specification that the laser beiam {ransfer coefficienti=h_, +h_, .

moving. Theorem 3 is a powerful one, including quam "
effects in classical heat equation such as therptisp of

one, two, three and four photons. In this way, Waim a . . . L :

semi-classical heat quation. We belie¥/e that ourmCIUded.m_t.he heat equations. This is a very irtgyd

mathematical model could be of great help to peopleassumptlon, if we consider the thermal dependeii¢ieo .

working in laser processing area. mentioned parameters, we are force to use numerical
It is very easy to find out solutions to a heatatmn models.

considering the very simple models of interactids.long

as one faces realistic situations involving more

complicated interaction models, the heat equati@t®me

more and more difficult to be solved [1, 2, 3].

We first discuss two approximations us$ed
solving different heat equations [4, 5, 6, 7]. Tst one
treats the supposition of linearly approximation thé radiush ) is:
boundary conditions. If the flux across the surfase
proportional to the temperature difference betwdem

The second approximation refers to the thermal
independence of the optical and thermal parameters

2. Theorem No. 1

The heat equation in the case of laser irradiatioa
homogeneous solid sample (cylinder with heihand
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0°T(r,z,¢,t) +}aT(r,z,qﬁ t) +62T(r zZ$t) 10T(rzpt)

__Arzgi)

1)

or? r or 0z°
(Where:y is the thermal diffusivity, K is thermal

conductivity, and A(r, @, z,t) is the heat rate variation
per unit volume and time). The boundary conditiares

oT(r,p,zt)
K or

w7 hT(b,¢,z,t)=0

oT(r,p,zt)
K or

o -hT(r,p0,t)=0.

oT(r,p,zt)
K or 7=

T hT(r,ga,t)=0
2

00 00

y ot k

The “periodicity” conditions are in this case as

follows:

T(r,0,zt)=T(,27,2}t). 3)

The temperaturd is a function of(r,¢, z,t) and is
defined as the temperature variation. We have finere
T(r,¢,z,0)=0.

If we consider the case of a continuous-wave (cw)
CGO; laser source operated in the transversal n{dtﬂﬂ} ,

we have the following solution of Eq. (2):

T(r.pzt)= izz le (e Ay D0 (@ A XKy 7 XK, (2 p K, @y 2 )

=1

>y

i=1 1=0 j=1

mn i=1 I=

00
j=

m,n

(4)

zf2|—1 K A 100 My Ay K g 13K, (2 89K, A 2)

Here:
o (A = e [ @ 877X K, (A, 2)dz
vor (5)
[[1m (@ BxK, 4 1. 9K, 2pdyde
00
And
f2|—1(:ui|’Apl):Wl,lch‘a@_azsz(ﬁj,Z)dzx
o2 (6)
[[1m r@OXK, 1 1, 9K, (2 @dde
00
Where K,(A,,2)=cos@, 2} b kA, )Csing,z .

1.(xy)= Imm[Hm(%)Hn(%)xexp["(%mz

9 A, ) =1 (@ + A7) =€~ (1= H T ety )]
(7)
Here,B”zj = y(,u”Z+/1j2), h(t—to) is the Heaviside
function and t;, the exposure time. The functions
K. (4,1), K, (2,9), K, (2 -1¢) and K,(4,,2)
are eigen-functions corresponding to the eigenesajy, ,
20, 2-1, A. We haveK (g4,,r)=J (4, @),

K,(2,p)=cos(g) K, (2 -1p)=sinlg) and

Proof of theorem No. 1:
The heat equation inside cylindrical samples (&), (vas
solved using the integral operators’ method. Tomiglate

differentiation with respect 9 we seD,, = 0°T/o¢.
The auxiliary function Rq)(y, qo) = (1/7T) K(p(y,w)
must satisfy the equatio(ﬂzRga 10¢7) +I ?K» =0 and

the periodicity conditionK ¢‘ = K¢‘ .
@=0 Q=21
these equations is

solution of

1
= I f =2
ﬂcos( @) for y

The

K¢(yl¢): 1 . ~ :
I—Tsm(lqo) for y=2-1
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Applyinng(y, ¢) , Eq. (1) becomes

9°T 19T . 0°T 12= 14T _ A(rl,zt)
—t——tF— =TT ———-—=——"=
o’ ror 0z r* yot K
8
Where:
f— — 2” —
T(r,y,z,t):T(rJ,zI):_[0 T(rezt)Ke(l ) dp
g 2l
andy = .
Y71 2-1
To eliminate differentiation with respectito we set
DrT :6_'2F+10_T_I_2T .
orc ror r
The auxiliary function

K, (4,r)=K, (t,r)%(1/C,) r must satisfy the

equation:

o
—r
or

7 2
K, ]-'_ R+ 4R, =0

or r
and the boundary condition
~ oK ~
K| (o, |k—=L+hK | =0.
r=0 or .

The solution isK, (t,,r)=3 (wr) (11C)) r
Where

C, =j0b r[J (,u”r)]zdr =1/24 [bz(h 1K) +0%2 -1 2} 32(14,b)
and 44 is given by, J/ (£4,b) +hJ, (14,0) =0.

Applying Rr (/,1“ ,r) Eq. (8) becomes

e .
74+97 o7 _Almzt) )
y ot k

/'Iil 022

Wheref(M,,z,t):Cij:’f(m 2) 13, (1) dr
il

To eliminate the differentiation with respectzo we set

DT = i—zf . The function
0z
KZ (/lj , Z) = (1/CJ.) K, (/lj ,Z) must satisfy

62K2/022+M€Z=0 and the boundary conditions
[k(akz/az)—hkz} =0,
(K@K, /dz)+hK, | =0.

The function is
K,=(1/C;) (cos @,z )+(h kA;) sifA,z)
where C, ZIOaIZf (/]j,Z) dz and A; is given by
2cot@d,a)=(Ak /h)=(h /A k).

Applying KZ(/IJ.,Z) Eqg. (9) becomes:

~ 19T _ A(:in/]j 't)

HT+AT +T/E = K (10)

Using the direct and inversion Laplace transform
technique one can solve Eq. (10) and obtain thatisok
of the first theorem. An application to the theorlm 1 is
show in Fig. 1.

Fig. 1 The thermal field generated in bulk Cu by a cw
CO, laser source operating in TEMg; at 10 W, stationary

(v= O) on the sample surface, irradiation time 10 s.

3. Theorem No. 2

We next consider the case of a laser beam in motion
on the Cu sample surface with a velodity The

components of the velocity along the two axes \grand

2 respectively. A new reference system with the

coordinates X=X, +Vv, [fand y=y,+v [ is

introduced and adapted correspondingly to the sourc
term.

We perform calculations far, =10 mm/syv, =0,

t =10 s (Fig. 2) andt =20 s (Fig. 3). As in the case
presented in Fig. 1, the cw G@ser beam was operating
in the TEMy; transversal mode at an output power of
10 W.

By comparing Fig. 1 to Fig. 2 and Fig. 3, we first
notice that the two temperature maxima are preiseatl
cases. The main difference is due to the depthhef t
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minimum between the two peaks, which is decreasing Fig. 3 Thermal field generated in bulk Cu by a cw CO;
from Fig. 1 to Fig. 3. The differences between the laser source operating in TEMgs at 10 W scanning the
minimum and maximum temperatures are diminishirgy an ~ sample surfacewith v, =10 mnvsirradiationtime 20 s.

the plateau between the two maxima moves to higher

temperatures. This observation is congruent with a

uniform heating of the sample as an effect of thset The proof of the second theorem is identical wité t
beam movement. This effect is more pronounced & th proof of the first theorem with the mention that ave to
case of a higher velocity of the laser beam. make the changes(, — X andy, — Y.

4. Theorem No. 3

The macroscopic heat equation is employed to
investigate the temperature field in a (InSb) semdtictor
exposed to a CQaser with a Gaussian spatial profile and
a rectangular nanosecond pulse. The sample is seggo
be homogeneous and therefore, there is no angular
dependence on the temperature variation. The enuati
describing the heat diffusion inside a cylindricsdlid
sample irradiated by a laser beam centred to thieepis:

0°T 10T 9T 19T __A(r.4.zt)

= — 11
or> ror 0z° yot K ()

Fig. 2 Thermal field generated in bulk Cu by a cw CO,
laser source operating in TEMg; at 10 W scanning the

sample surface with V, = 10 mmvsirradiation time 10 s

In the presence of one-, two-, three- and four-tqmo
absorption, described by coefficit, the change in the
light intensity as it passes through the sample is:

dl
—=-q,l —a,?

o 1°—a,l* (12)

In order to consider the multi-photon absorptidre heat
rate per unit volume and time is calculate usirgBleer’s
law:

Ar,zt)= (a, 0o (1. 2)+ @, oo 2)+ad ot a | o5t 10 @)ht)-hE -t J) a3
The solution of the heat equation is:
Where:t is the pulse duratiorh(t) is the step function

and g is the surface absorption coefficient.
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Tooaa (1 Z)= ZZ[—Mzb,z T (AT ™ - - e Y R -t ) x

= (14)
xK, (14,1)K,(4,,2)
where 49”2 =y’ +/1]-2) and
ab
fon (b A) = [ [ @l ++a ) i(r, ) +ad g+ a ) s 132 T
00

C, andC, are normalizing coefficients. The eigen-values K,(z,4,) = cos{d;z )+ 5 sind, [z | are normalized
J
4 and A; correspond to the eigen-functioh§, (r, £4) by the following coefficients:

andK,(z,4;). The integral operators corresponding to

b
the eigen-functions K, (r,44)=J,(4 ) and C :IrKf(r,M)dr :Zb_;z(:_i +17)I 2 (ub)
O 1

(16)
And
o :IKf(z,AJ)dz:‘l_i?(zg)lj +2at A + 2247 - 22, cos[a);
0
h2
-—sin[2aA, ]+ A? sin[2a, ])
k (17)

The eigen-valuest and /1] are determined from the
boundary conditions.

5. Results and discussion regarding theorem
no. 3

In the previous section, the heat diffusion equmtio
was analytically solved in order to determine the
temperature field inside a semiconductor samplee On
cylindrical InSb sample of radiusb=10 mm and
thicknessa=4 mm, was considered. The sample was

supposed to be irradiating by a 5 ms TEMO, laser
beam of 100 W power and 2 mm widtithe InSb

sample’s characteristics are mass dengity5.78 g/cn?

thermal conductivitk =16 W/mK specific heat

¢ =0.144J/g 'C absorption coefficieny = 0.64 mm*

two-photon absorption coefficied =15cmMW™. A Fig. 4 Computed temperature field inside InSb probe
typical temperature distribution versus time andiak exposed for 5 msto a 100 W TEMgo CO; laser beam
coordinate, neglecting the two absorption coeffiti¢
[ =0), for a 5 ms TEM, CO, laser beam is shown in
Fig. 4. The temperature distribution reaches itximam

in the sample centre, in the point where power itiehsis There are many methods for measuring the thermal

its maximum. Our simulation shows that if we coesid fie|ds in laser-matter interaction but most of theguire a

B =15 cmMW"' the temperature field increases with complex mathematical apparatus as well very comafslit

3.34% in respect to the maximum temperature fi¢lthe  experimental setup. .

B = Ocase (Fig. 4). Our paper presents a direct and .powerful
mathematical theory to compute the thermal fielthe T
solving procedure is base on applying the integral

6. General discussions
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transform technique, which was develop in 1960 thyy
Russian school of theoretical physics [1].

The comparison with data from literature [2, 3]inis
good agreement with our model [4, 5, 6, 7]. We taie
that our analysis is quite general, but its aptiticefails as
soon as the material is melt and vaporize undadiation.

At the end of our conclusions, we should mentiat th
there are other models competitive with our modibkese
models are in general more complicated, but maysieein
parallel with our model in order to extract more
information [8].

For example, in reference [8] it is avoid the Feuri
differential heat equation and it is used the Duélésn
principle which leads to a convolution, integrated
analytically by using a Taylor series approximation

We conclude that our model [9, 10, 11, 12] is direc
and powerful enough to give rapidly and corredtly first
information on the temperature distribution for das
material interaction.
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