
Chalcogenide  Letters                          Vol. 9, No. 10, October 2012, p. 413 - 419 
 
 

 
 

OPTICAL PROPERTIES OF ZnS NANOPARTICLES PRECIPITATED AT 
VARIOUS MOLAR RATIOS OF SULPHIDE AND ZINC IONS AND 

STABILIZED BY CTAB 
 
 

ONDŘEJ KOZÁKa, PETR PRAUSb*, RICHARD DVORSKÝc 

aRegional Materials Science and Technology Centre, VŠB-Technical University of 
Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic 
bDepartment of Analytical Chemistry and Material Testing, VŠB-Technical 
University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic 
cInstitute of Physics, VŠB-Technical University of Ostrava, 17. listopadu 15, 708 
33 Ostrava-Poruba, Czech Republic 
 
ZnS nanoparticles were precipitated by the reaction of zinc and sulphide ions in aqueous 
media and stabilized by cetyltrimethylammonium bromide (CTAB). The nanoparticles 
size (diameter) was calculated using the relationship between band-gap energy and radius 
as a result of the quantum size effect. Depending on the molar ratio of precursors S2-/Zn2+ 
= 0.25–2.0 and time elapsed from their preparation t = 0–5 h, nanoparticles with sizes of 
3.5–4.8 nm were obtained. The absorption of UV radiation and photoluminescence (PL) of 
the nanoparticles dispersions were studied. The nanoparticles growth dependent on time 
and the S2-/Zn2+ ratio were indicated by changes in UV absorption and PL spectra. The 
stabilization effect of CTAB was observed for all S2-/Zn2+ ratios up to 5 hours. At longer 
time intervals (3 a 4 days) flocs of ZnS nanoparticles and CTAB were observed. 
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1. Introduction 
 
Semiconductor nanoparticles such as ZnS have been in the scope of many research works 

over the last decade. The reasons for such a great attention are their outstanding physical and 
chemical properties, which differ considerably from that of bulk ZnS. The enhanced properties 
make the nanoparticles very utilizable in the field of chemical industry, semiconductor technology, 
optical devices, medicine, environment protection etc. [1-3]. 

ZnS nanoparticles are mostly prepared by precipitation [4-7], which involves the reaction 
between zinc and sulphide precursors. Their concentration and stoichiometric ratio plays an 
important role in the properties of nascent nanoparticles. Several studies mentioning the 
dependence of ZnS nanoparticle size upon the molar ratio of precursors have been published [8-
10]. 

Various ways to prevent ZnS nanoparticles from unrestricted growth in aqueous media 
have been described in the literature. A whole range of organic compounds can serve as stabilizers, 
however surfactants are among the most used ones [11-13]. Surfactants such as 
cetyltrimethylammonium bromide (CTAB) form micelles in aqueous media if their critical 
micellar concentration (CMC) is exceeded. The nascent particles can be capped inside these 
micelles and thus protected from unlimited growth [11,14]. 

In general, one of the promising features of semiconductor nanoparticles is their 
photoluminescence. Many studies dealt with PL of both pure ZnS [15] and ZnS doped with 
different metals ions such as Mn2+ [16], Ag+ [17], Fe2+ [18] and others [19]. It was shown that the 
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molar ratio of S2-/Zn2+ has an influence on the PL intensity of both undoped [10] and doped [8] 
ZnS nanoparticles. Mehta and Kumar [20] suggested that the PL intensity is time-dependent, 
which was also supported by Sato et al. [21] and their study of CdS photoluminescence. 

The aim of this work was to study the size. UV absorption and photoluminescence 
properties of ZnS nanoparticles dependent on the S2-/Zn2+ molar ratio and time elapsed from their 
preparation. CTAB was used for their stabilization. 

 
 
2. Experimental 
 
The used chemicals were of analytical reagent grade: Zinc acetate, sodium sulphide 

(Lachema, Czech Republic), cetyltrimethylammonium bromide (Sigma Aldrich). The water used 
for aqueous solutions preparation was deionized by reverse osmosis (Aqua Osmotic, Czech 
Republic). The ZnS nanoparticles were prepared in the presence of CTAB following the method 
described in our previous work [22]. The aqueous solution of Na2S and CTAB (solution A) was 
added to the stirred aqueous solution of zinc acetate (solution B). A set of the solutions A with the 
different Na2S concentration was used while the concentration of CTAB and zinc precursor was 
kept constant. The molar ratio S2-/Zn2+ was changed from 0.25 to 2.0 and the concentration of Zn2+ 
was constant. Properties of the ZnS nanoparticles were measured in freshly prepared dispersions 
and in the same dispersions after different periods of time during which the dispersion were 
exposed to day light and air atmosphere in covered beaker (to minimize vaporisation). 

UV-VIS spectra of the ZnS dispersions were measured by an UV-VIS spectrometer 
Lambda 35 (Perkin Elmer, USA) using 1 cm quartz cuvettes. Photoluminescence spectra were 
recorded at room temperature by a FLS900 fluorescence spectrometer (Edinburgh Instruments, 
UK) at the excitation wavelength of 315 nm using 1 cm quartz cuvettes. The pH value of the ZnS 
dispersions was measured by means of a Metrohm pH meter 691 (Metrohm, Switzerland). 

Transmission electron microscopy of the ZnS dispersions was performed on a Jeol JEM 
1230 microscope operated at 80 kV. The prepared samples of the ZnS nanoparticles stabilized by 
CTAB were placed on a copper grid (400 mesh) coated by a film of 1.5–3.0 wt. % of 
polyvinylformaldehyde in chloroform, dried by blotting paper and analyzed after 2 days. The 
contrast of micrographs was improved by 1wt. % solution of ammonium molybdate added to the 
samples. The X-ray powder diffraction (XRD) study was performed by a powder diffractometer 
(BRUKER D8 ADVANCE) equipped with scintillation and position-sensitive detectors 
(VANTEC) and a source of CoK radiation. The diffraction patterns were recorded in an ambient 
atmosphere under constant conditions (50 kV, 60 mA). The XRD patterns were identified using 
the PDF-2-Release 2004 database. 

 
 
3. Results and discussion 
 
ZnS nanoparticles were precipitated at different S2-/Zn2+ ratios in the presence of 

stabilizing CTAB. The absorption and photoluminiscence spectra of the ZnS dispersions were 
recorded. 

 
3.1 UV-VIS absorption spectrometry 
 
The solutions A and B were mixed together and the UV spectra of the originating ZnS 

dispersions were recorded. The time elapsed between mixing the solutions A and B to recording 
the first UV spectrum (ref. to t = 0 h) was approximately 30 seconds. The prepared dispersions 
were then kept unstirred in covered beakers under room conditions and the other spectra were 
recorded after 1, 3, and 5 hours. 

The UV spectra recorded at t = 0 h and t = 5 h can be seen in Figure 1. Compared to bulk 
ZnS having the absorption edge at about 340 nm [23], the blue-shifted absorption edges observed 
at 310 nm confirmed formation of the nanoparticles. In Fig. 1A one can see that with the 
increasing S2-/Zn2+ ratio in the range of 0.25–1.25 there is a huge growth of the absorbance 
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Fig. 2 Dependence of ZnS nanoparticles size on molar S2-/Zn2+ ratio 

 
 

At all tested time intervals the nanoparticle size increased until S2-/Zn2+ = 1.25 as a result 
of increasing amount of ZnS. It is obvious that the nanoparticles growth was finished during the 
first 3 hours. The nanoparticles were not coagulated by two main reasons. First, according to the 
Weimarn’s law the lower concentration of S2- means that the ZnS concentration was small and the 
nanoparticles were less exposed to direct interactions leading to coagulation. Second, the excessive 
Zn2+ ions were adsorbed on the nanoparticles surface according to the Paneth-Fajans rule forming 
the electric bilayers of Zn2+ and acetic anions, which stabilized the ZnS dispersion by mean of 
electrostatic repulsion. In addition, CTAB also played an important role in the stabilization. Unlike 
the situation studied recently [14], when CTA ions were adsorbed by their positive headgroups to 
ZnS nanoparticles surface covered by excess S2- ions, in this case the CTA ions were adsorbed on 
the nanoparticles (covered by Zn2+ ions) likely by means of their hydrophobic alkyl chains. Thus, 
the surface positive charge was balanced by bromide and acetate ions resulting in miceles that 
were mutually stabilized by electrostatic repulsion forces. The nanoparticle growth in time was 
caused by the Ostwald ripening. 

At S2-/Zn2+ ratio < 1.25 pH varied in the range of 6−7 and sulphide also existed in the 
forms of H2S and HS- that were unavailable to form ZnS. This is the reason why the maximum 
size of ZnS was reached at S2-/Zn2+ = 1.25 and not at their theoretical stoichiometry equals to 1. 
Also, the huge change of pH of the formed ZnS nanodispersion from 6 (S2-/Zn2+ = 1) to 10.4 (S2-

/Zn2+ = 1.25) implies that a slight excess of sulphur precursor is required to reach the 
stoichiometric amount of S2- ions and thus to get to the constant particle size. 

 At S2-/Zn2+  1.25 size of the ZnS nanoparticles remained nearly constant due to 
the lack of Zn2+ to form other ZnS. The excessive S2- ions were adsorbed on the nanoparticles 
surface forming the electric bilayer with CTAB as mentioned above [14]. The nanoparticle growth 
caused by the Ostwald ripening was more intensive then at S2-/Zn2+ < 1.25. 

 
 
3.2 Transmission electron microscopy 
 
Transmission electron microscopy was performed to study the stabilization effect of 

CTAB on the ZnS nanoparticles. Figure 3 shows the TEM micrograph of ZnS and CTAB 
dispersion prepared at S2-/Zn2+ = 2 and t = 0 h. It is obvious that both the separated (on 
background) and flocculated ZnS nanoparticles are present in the dispersion right after the 
synthesis. The discrete ZnS nanoparticles can be distinguished in the flocs, which agrees with the 
fact that the nanoparticles absorbed the UV radiation of the lower wavelengths than bulk ZnS as 
discussed above. ZnS and CTAB were identified by XRD as main crystalline phases. 
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Fig. 3 TEM micrograph of ZnS and CTAB dispersion at S2-/Zn2+ = 2 at t = 0 h 
 

3.3 Luminescence spectroscopy 
 
There is a strong relation between optical absorption properties of semiconductor materials 

and their photoluminescence. Absorption of energy equals to or higher than the band-gap energy is 
required for subsequent photoemission. Unless the photo–excited electron-hole pair (exciton) 
undergoes nonradiative recombination, an emission of photon can occur. The quantum size effect 
influences both the position and shape of the emission and excitation bands in the PL spectra. 

 
Fig. 4 Excitation PL spectra of ZnS dispersions at various S2-/Zn2+ ratios 

 
When the size of semiconductor nanoparticles is getting closer to the Bohr exciton radius a 

blue-shift in the absorption or excitation PL spectra [28] as a result of the quantum size effect. 
The excitation PL spectra of the ZnS dispersions measured at 445 nm can be seen in 

Figure 4. The spectra were normalized and vertically shifted for clarity. The low-energy edge was 
red-shifted with increasing the S2-/Zn2+ ratio until the stoichiometric ratio of 1.25 was reached. 
This observation agrees well with the red-shift absorption bands in Figure 1 and documents that 
lower energy was required to induce photoluminescence in dependence of the nanoparticle growth. 

The PL spectra of the ZnS dispersions prepared at S2-/Zn2+ = 0.5 in Figure 5A show the PL 
intensity and spectra shape dependence on the time elapsed from the ZnS precipitation. The 
increase of the PL intensity was observed as a result of the increase of concentrations of the ZnS 
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molecular modelling methods [14]. Their photocatalytic properties will be tested for the 
photodecomposition of some environmental pollutants. 
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