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In this paper, we investigate the existence of a transition glass temperature in amorphous 

chalcogenides by means of numerical simulations in the two-dimensional Coulomb glass 

model. The powerful algorithm we employ enables us to explore greater sizes and lower 

temperatures than other numerical approaches. From the results we can infer that the 2D 

system is compatible with a dynamic glassy transition at zero temperature, in agreement 

with previous preliminary studies. 
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1. Introduction 
 

The connection between glassy chalcogenides and electron glasses has been pointed out in 

some recent publications [1-3]. This relationship describes the amorphous chalcogenide as a 

strongly correlated system with localized states in which, at very low temperatures, the combined 

effect of disorder and Coulomb interactions plays an essential role. In this fashion, the system 

exhibits all the essential electronic properties of Coulomb glasses: loss of ergodicity, memory 

effects or aging, among others, which are also features common to most glassy systems. 

The deep comprehension of the glassy state is still a challenge for scientists, and an open 

question in the nature of electron glasses is, for example, its critical behavior and the existence of a 

transition glass temperature. The origin of this kind of studies comes from the early eighties, when 

Davis, Lee and Rice approached the problem of a regular 3D lattice with diagonal disorder [4]. 

The analysis of the response functions, i.e., the thermal capacity and the electric susceptibility, 

gave them evidences of the existence of a phase transition, but the study failed in the 

characterization of the related order parameter. In the nineties, the importance of the diagonal 

disorder was pointed out by Grannan and Yu [5], and Votja and Schreiber [6]. The first ones found 

a transition in 3D systems without diagonal disorder, while the second ones limited the validity of 

that study precisely to the absence of such disorder. Since there, the question became a common 

topic in the literature on Coulomb glasses and glassy chalcogenides [7-9].  

Modern numerical simulations can shed light on the problem, due to the capability of 

modern computers and the efficiency of the new simulation algorithms [10, 11]. Among them, the 

work of Grempel [12] is one of the most representatives, which results are compatible with a glass 

transition at zero temperature. In our work, we present the numerical results for simulations in 2D 

systems in samples with diagonal disorder and sites places randomly. We measure the time that the 

system employs to reach equilibrium for several temperatures. We explore much larger sizes than 

Grempel and lower temperatures by means of new simulation algorithms, and employ a much 

easier procedure to determine relaxation time of the system, that is, the time for reaching the 
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equilibrium state. As we will see, the results are also compatible with a freezing transition at T = 0, 

which appears as a common result in current numerical simulations for these 2D systems.  

 

 

2. Mathematical model and numerical details 
 

The standard tight-binding Hamiltonian for describing Coulomb glasses is [2, 13] 

 

                                𝐻 = ∑ 𝜙𝑖𝑛𝑖

𝑖

+ ∑
(𝑛𝑖 − 𝐾)(𝑛𝑗 − 𝐾)

𝑟𝑖𝑗
𝑖<𝑗

                                   (1) 

 
This classical Hamiltonian neglects the effect of the quantum energies of tunneling 

between sites, because in the regime of strong localization are much smaller than the rest of 

relevant energies of the system: disorder, interaction and thermal energies. In expression (1), 𝑛𝑖 is 

the occupancy number of site i, which can either be 0 or 1, and 𝑟𝑖𝑗 is the distance between sites i 

and j. Variable 𝜙𝑖 is the so called random site potential, which represents the random energy of 

site i. We choose its value from a uniform distribution between –W/2 and W/2. To conclude, we 

define K as the compensation, which ensures the electrical neutrality of the system. 

We investigate the dynamics of insulating samples doped with impurities randomly 

placed, in the so called variable-range hopping regime [13] at very low temperatures. The system 

thus behaves as a dielectric sample in which the dynamics is established by jumps of electrons 

from occupied to empty sites. It is considered that the electrons are placed in the same positions 

that the impurities, and so the localization length, 𝜉, is considered very small [14]. We study 

squared samples of lateral dimension L and apply periodic boundary conditions.  
The units employed in this work are the same considered in previous works [2, 3]. This 

time, our range of temperatures is [0.05, 0.1] and the typical size of the samples is N = 1000.  

We employ two kind of algorithms in our numerical simulations. First of all, specific 

optimization algorithms, designed to find the lowest energy levels of the system and their 

corresponding configurations (i.e. occupations), for each temperature [15, 16]. In particular, we are 

interested in the ground state. Secondly, kinetic Monte Carlo algorithms based in the work of 

Tsigankov et al. [17]. The key ingredient of our work is to follow the relaxation of the system 

through equilibrium by starting with two different initial conditions, that is, the occupancy of the 

electrons: (a) random occupancy of sites, which represents a typical quench at low temperatures 

and (b) the ground state, since the specific optimization algorithms also determine the occupancy 

of the lowest energy levels. So, we perform two different dynamic simulations for each 

temperature using Tsigankov’s algorithm and determine the time at which both data converge, 

which we call the relaxation time, 𝜏eq.  

 

 

3. Results and discussion 
 

In the literature on other glassy systems, such as spin glasses, some authors suggest that 

the dimension from which a glassy transition can be found is three [18]. Somehow, the existence 

of disorder would increase in one unit that critical dimension with regard to the model without 

disorder. Other works on the same field, on the contrary, estimate the critical dimension one less 

unit [19]. The mapping of the Coulomb glass model to the long interaction range spin glasses one 

[13] suggests that the results obtained in these will remain valid for those. Nevertheless, as 

commented, this topic is nowadays and open question. Among all the numerical studies that 

measure the relaxation time to equilibrium in Coulomb glasses, 𝜏eq, Grempel (2004) is one of the 

most representatives, as remarked in section 1. Data were obtained by means of Monte Carlo 

simulations in a two dimensional system without diagonal disorder. To measure the dependence of 

𝜏eq on T, Grempel used Bhatt and Young’s method [18], based in the convergence of two 

correlation functions. The first one measures the correlation of an observable corresponding to two 
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samples with the same degree of disorder, at the same time 𝑡0. The second one refers to the same 

sample and measures the correlation of the observable at the instants 𝑡0 and 2𝑡0. Magnitude 𝜏eq is 

defined as the time at which both curves converge. The quantitative analysis is consistent with a 

divergence of 𝜏eq at T = 0, thus it is obtained that 

 

 𝜏eq ∝ exp (𝐴/𝑇) 

 
where A is a constant. The data from Grempel show an overlap of the curves up to a temperature              

T = 0.04, although such low temperatures are not representative due to finite size effects [13]. 

In our numerical simulations we have calculated, likewise, the value of 𝜏eq, for the temperature 

range 𝑇 ∈ [0.05, 0.1]. The main difference with Grempel’s model is that we consider diagonal site 

disorder, 𝜙𝑖 ≠ 0. In principle, Grempel data should be replicable, since strong arguments assert 

that, in case of a glassy phase transition to occur in two dimensions, it should be reached in an 

easier way in the problem without diagonal disorder. This is due to the explicit symmetry between 

electrons and holes for that situation, thereby leading below a critical temperature to a phase with 

two symmetric energy minima, like an Ising magnet, for example. Nowadays, Grempel’s work is 

considered as a seminal study, but it considers too small samples, tipically N = 64, in which, as 

commented, finite size effects can’t be neglected [13]. Besides, some of the temperatures he 

treated are too high, which implies that the Coulomb gap is filled enough and the system 

approaches the crossover zone through the non-interacting regime, described by Mott’s law. In our 

simulations, the upper limit for T is 0.1, which guarantees that the gap is only partially filled, as we 

can see in Figure 1, and so the system is placed inside the  pure interacting regime.  We show the 

form of the Coulomb gap in equilibrium for a system of size 1000 at T = 0.1 with diagonal 

disorder. The data were obtained by following the standard procedure described in [11]. Variables 

𝜀 and 𝑔(𝜀 − 𝜀𝐹) are, respectively, the site energy and the normalized density of states, as defined 

in [3]. Quantity 𝜀F is the site energy obtained from the ground level. 

 

 
 

Fig. 1. Partial filling of the Coulomb gap in equilibrium for a system of size 1000 at T = 0.1 

 

 

The procedure followed to determine 𝜏eq in our simulations differs from that used by 

Grempel. It explores larger sizes and lower valid temperatures. As remarked above, we perform 

two simulations at each temperature for the same sample built. In one of them we start in a totally 

random configuration and measure the energy relaxation towards equilibrium, while in the other 

one we start in the ground state, monitoring the same magnitude. The time for which the two 

curves converge is our value of 𝜏eq. We perform the simulations up to a maximum time of 10
7
 

Monte Carlo steps using the mentioned Tsigankov et al. algorithm [17], and we achieve an overlap 

of both curves up to a temperature T = 0.05. Below it, for our conditions, 𝜏eq < 𝑡sim, where 𝑡sim is 

the total simulation time. 

In Figure 2 we show the typical overlap of the two curves to determine the value of 𝜏eq. 

The black line represents the quench experiment, that is, relaxation of the energy E from a random 
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configuration. The red line corresponds to the relaxation from the ground state configuration. In 

our simulations, the magnitude of 𝜏eq has been determined by assuring that both curves only differ 

a fixed small percent.  

 

 
Fig. 2. Relaxation of the energy, E, as a function of time, t, for a system of size 1000 at                   

T = 0.08, starting by two different initial conditions of occupancy: random initial 

configuration    (quench,   black line)   an d  ground   state  configuration  (red line).  The  

convergence of both curves defines the equilibrium time. 

              

 

 In figure 3 we represent ln 𝜏eq vs 1/T for a system of size 1000. A good linear dependence 

is shown, which is compatible with a dynamic glassy transition at T = 0. The linear fit has been 

extrapolated to 1/T = 0, and it shows an intersection with the vertical axis equal to 1.6. This fact 

suggests that, at infinite temperature, the equilibration time is not zero, as might be expected a 

priori. This fact is associated to the dynamic of the program, since it needs at least one Monte 

Carlo step to carry out the relaxation. 

 

 
Fig. 3. Natural logarithm of time vs 1/T for a system of size 1000. The good linear fit of the 

data is compatible with a dynamic glassy transition at T = 0. The extrapolation of the 

fitted line results in a value of ln 𝜏𝑒𝑞 = 1.6 for infinite temperature. 

 

 

4. Conclusions  
 

In this paper we show a simple and illustrative numerical method to determine the 

presence of a glass transition temperature in two-dimensional glassy chalcogenides. The glass 

transition is still a challenge for scientists and new numerical approaches have to be developed to 

achieve a full comprehension of the glassy state. Compared with other preliminary studies, our 

procedure explores greater sizes and lower temperatures. The analysis of the range of temperatures 

relevant for the study is also an advantage in our approach, because extreme values have to be 

controlled. Lowest temperatures should lead to finite size effects, while highest ones may put the 
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system into the crossover zone, approaching the non-interacting regime. Besides, the procedure for 

determining the equilibrium time is easier to perform than in previous simulations. 

The versatility of the method can be employed to study pseudo two-dimensional or three 

dimensional systems, which are more related to the real experiments, topics in which we are 

working, nowadays. 
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