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In stiff reaction–diffusion equations, whiles explicit time discretization schemes are 
utilized, the stability constraint on the time step depends on two terms: the diffusion and 
the reaction terms. If the linear diffusion has been treated exactly by applying the 
integration factor (IF) or exponential time differencing (ETD) methods, then the part of the 
stability constraint due to diffusion can be completely eliminated. For systems with strictly 
stiff reactions, these methods are not efficient as the reaction term in IF or ETD is still 
estimated with explicit schemes.  In this work, a new class of semi-implicit schemes are 
established, which treats the linear diffusions exactly and explicitly, and the nonlinear 
reactions implicitly. The stability region for this class of methods is much larger than the 
existing methods using an explicit treatment of reaction terms. Especially, the one with 
second order accuracy is completely linearly stable with respect to both diffusion and 
reaction. 
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1. Introduction  
  
The following equation is considered for many physical and biological applications, 
 

  
డ௨

డ௧
ൌ ݑ∆ܦ ൅  ,     (1)	ሻݑሺܨ

 
where ݑ ∈ ܴ௠  represents a group of physical or biological species, ܦ ∈ ܴ௠ൈ௠  is diffusion 
constraint matrix, ∆ݑ is the Laplacian which is associated with the diffusion of species ݑ, and 
 ሻ illustrates chemical or biological reactions. If the method of lines is utilized for solving theݑሺܨ
equation numerically, reaction-diffusion (1) can be reduced to a system of ODEs: 
 

௧ݑ  ൌ ݑܮ ൅  ሻ,     (2)ݑሺܩ
 
where ݑܮ is a finite difference approximation of ݑ∆ܦ . Let N shows the number of spatial grid 
points (independent of number of spatial dimensions) for the approximation of Laplacian ∆ݑ.Thus 
ሻݐሺݑ ∈ ܴேൈ௠  and ܮ  is a ሺܰ.݉ሻ ൈ ሺܰ.݉ሻ  matrix representing a spatial discretization of the 
diffusion. The size of the time-step for a time integrator for solving (2), is constrained by the 
inverse of the eigenvalues of the diffusion matrix D as well as the stiffness of the nonlinear 
reaction term ܩሺݑሻ. As N increases, the diffusion constants in the system (1) become large or the 
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spatial resolution is better, the stability restriction becomes very rigorous because of diffusion            
[1-3]. 
 Moreover, the part of the linear diffusion has been reduced to the evaluation of an 
exponential function of the matrix ܮ	 , after that an approximation of an integral relating the 
nonlinear term	ܩሺݑሻ. Different approximations of the integral involving nonlinear term ܩሺݑሻ give 
rise to either the integration factor (IF) method or the exponential time differencing (ETD) method. 
For ETD methods, special treatments for a variety of operations on	ܮ (e.g., its inverse) are needed 
in order to maintain a consistent order of accuracy [4-6]. Leo et al. [7] studied the fixed points for 
the original systems which are not precisely conserved in the numerical scheme, and as a result, 
further terms have to be included in the standard IF methods in order to preserve such 
conservation. Cox and Matthew [8] discussed one way of improving the stability region for a stiff 
reaction is to take in a Runge–Kutta type estimate for the term involving	ܩሺݑሻ in the ETD scheme. 
 In general, the exponential time differencing Runge–Kutta method (ETDRK) has a larger 
stability region than the standard ETD while the multi-stage nature of Runge–Kutta methods need 
more function evaluations [3]. On the other hand, it is still not efficient enough for systems with 
highly stiff reactions, since often is the case for several biological applications, such as the 
morphogen gradient scheme in which the reaction rate constants in ܨሺݑሻ	 can be different by four 
to five order of magnitude [11-14]. Aziz et al. [18] studied a new review of exponential integrator, 
which is related to the numerical methods for solving stiff problems. 

In this study, we obtain the implicit integrating factor method (IIF). For this purpose, a 
numerical solution is acquired by approximating the function	݃ሺ߬ሻ with the Newton's form of the 
interpolating polynomial 	ܲሺ߬ሻ . Moreover, we present a stability analysis of this implicit 
integrating factor (IIF), where the Matlab codes are applied to this stability region.   
 

 
2. Implicit integrating factor methods 

  
Let us consider the derivation of the new temporal schemes for the scalar case of the semi-

discrete system (2) of the form 
 

 
ௗ௨

ௗ௧
ൌ ݑܿ ൅ ݂ሺݑሻ  ,               ݐ ൐ ሺ0ሻݑ         ,  0 ൌ  ௢  ,                       (3)ݑ

 
where c is a constant representing the diffusion, and f is a nonlinear function representing the 
reaction. Multiplying (3) by the integrating factor ݁ି௖௧  

ௗ௨

ௗ௧
	݁ି௖௧ ൌ ௖௧ି݁	ݑܿ ൅ ݁ି௖௧	݂ሺݑሻ, or 
ௗ

ௗ௧
ሺݑሺݐሻ	݁ି௖௧ሻ ൌ ݁ି௖௧	݂ሺݑሻ . 

To integrate the equation over one time step from ݐ௡ and ݐ௡ାଵ ൌ ௡ݐ ൅  we have , ݐ∆

׬
ௗ

ௗఛ

௧೙శభ
௧೙

ሺݑሺ߬ሻ݁ି௖ఛሻ݀߬ ൌ ׬ ݁ି௖ఛ
௧೙శభ
௧೙

݂ሺݑሺ߬ሻሻ݀߬, or 

௡ାଵሻ݁ି௖௧೙శభݐሺݑ െ ௡ሻ݁ି௖௧೙ݐሺݑ ൌ ׬ ݁ି௖ఛ	݂ሺݑሺ߬ሻ݀߬
௧೙శభ
௧೙

	, or 

௡ାଵሻݐሺݑ ൌ ௡ሻ݁ି௖ሺ௧೙ି௧೙శభሻݐሺݑ ൅ ݁௖௧೙శభ ׬ ݁ି௖ఛ
௧೙శభ
௧೙

݂ሺݑሺ߬ሻሻ݀߬ , or 

௡ାଵሻݐሺݑ ൌ ௡ሻ݁௖∆௧ݐሺݑ ൅ ݁௖௧೙శభ ׬ ݁ି௖ఛ
௧೙శభ
௧೙

݂ሺݑሺ߬ሻሻ݀߬, 

and substituting ߬ ൌ ௡ݐ ൅  into the integral, we have ݐ∆
 

௡ାଵሻݐሺݑ  ൌ ௡ሻ݁௖∆௧ݐሺݑ ൅ ݁௖∆௧ ׬ ݁ି௖ఛ
∆௧
଴ ݂ሺݑሺݐ௡ ൅ ߬ሻሻ݀߬  ,                 (4) 

 
where ݑ௡  is considered as a numerical solution for ݑሺݐ௡ሻ and ݃ሺ߬ሻ is proposed to be 
 

 ݃ሺ߬ሻ ൌ ݁ି௖ఛ݂ሺݑሺݐ௡ ൅ ߬ሻሻ.     (5) 
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In order to construct a scheme of r-th order truncation, we approximate ݃ሺ߬ሻ with the Newton's 
form of the interpolating polynomial,ܲሺ߬ሻ, with interpolation points ݐ௡ାଵ, ,௡ݐ … ,  .௡ାଶି௥ , i.eݐ

 ܲሺ߬ሻ ൌ ∑ ݁௜௖∆௧௥ିଶ
௜ୀିଵ ݂ሺݑ௡ି௜ሻൣ߮ሺିߝଵሻ ൅ ∑ ߮ሾିߝଵ, ,଴ߝ … , ∏௝ሿߝ ሺ߬ െ ௞ሻߝ

௝ିଵ
௞ୀିଵ

௥ିଶ
௝ୀ଴ ൧    

 0 ൑ ߬ ൑  (6)        .		ݐ∆
In the above equation, we identify   

௝ߝ ൌ െ1      , 	ݐ∆݆ ൑ ݆ ൑ ݎ െ 2   (7) 

,௝ߝൣ߮ ,௝ାଵߝ … , ௞൧ߝ ൌ
,௝ାଵߝൣ߮ ,௝ାଶߝ … , ௞൧ߝ െ ߮ሾߝ௝, ,௝ାଵߝ … , ௞ିଵሿߝ

௞ߝ െ ௝ߝ
 

with this  approximation to ݃ሺ߬ሻ, and (4) can be discretized as  
 

௡ାଵݑ  ൌ ݁௖∆௧ݑ௡ ൅ ݁௖∆௧ ׬ ܲሺ߬ሻ݀߬
∆௧
଴  .                                      (8) 

 
As a result, a direct evaluation of the integral in (8) leads to the new r-th order implicit scheme, i.e. 
 

௡ାଵݑ  ൌ ݁௖∆௧ݑ௡ ൅ ௡ାଵሻݑ݂ሺ	௡ାଵߙሺݐ∆ ൅ ∑ ௡ି௜ߙ
௥ିଶ
௜ୀ଴ ݂ሺݑ௡ି௜ሻሻ ,  (9) 

 
with ߙ௡ାଵ, ,௡ߙ ,௡ି௜ߙ … ,   ௡ି௥ାଶ defined asߙ
 

௡ି௜ߙ ൌ
௘ሺ೔శభሻ೎∆೟

∆௧
׬ ൣ߮ሺିߝଵሻ ൅ ∑ ߮ሾିߝଵ, ,଴ߝ … , ∏௝ሿߝ ሺ߬ െ ௞ߝ

௝ିଵ
௞ୀିଵ

௥ିଶ
௝ୀ଴ ሻ൧

∆௧
଴ 	݀߬ ,െ1 ൑ ݅ ൑ ݎ െ 2.     (10) 

 
To obtain the order of ݎ ൌ 2,  we must take the following forms of α in Table 1. 
 
 

Table 1: Coefficients α for implicit IF schemes with localized nonlinear systems. 

 
Thus the second order scheme (IIF2) is derived in the following form  
 

௡ାଵݑ  ൌ ݁௖∆௧ ൬ݑ௡ െ
∆௧

ଶ
݂ሺݑ௡ሻ൰ െ

∆௧

ଶ
݂ሺݑ௡ାଵሻ .     (11) 

 
To obtain the order of ݎ ൌ 3, 	we must take the following forms of α in Table 2. 
 

Table 2: Coefficients α for implicit IF schemes with localized nonlinear systems. 

  
Thus the third- order scheme (IIF3) is obtained in the following form  
 

௡ାଵݑ  ൌ ݁௖∆௧ݑ௡ ൅ ሺെݐ∆
ଵ

ଶ
	݂ሺݑ௡ାଵሻ െ

ଵ

ଶ
݁௖∆௧݂ሺ	ݑ௡ሻ െ

ଵ

ଶ
	݁ଶ௖∆௧݂ሺݑ௡ିଵሻሻ .   

 
Then the second, third, fourth order approximations to ݃ሺ߬ሻ are of the following forms: 
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1. Given ݃ሺ0ሻ ൌ ݂ሺݑ௡ሻ ,݃ሺ∆ݐሻ ൌ ݁ି௖∆௧	݂ሺݑ௡ାଵሻ , the second order approximation to ݃ሺ߬ሻ is  
 ܲሺ߬ሻ ൌ ݁ି௖∆௧	݂ሺݑ௡ାଵሻൣ߮൫ିߝଵሻ൯ ൅ ߮ሾିߝଵ, ଴ሿሺ߬ߝ െ ଵሻ൧ିߝ ൅ ݂ሺݑ௡ሻ߮ሺିߝଵሻ 
         0 ൑ ߬ ൑  .   ݐ∆
2. Given ݃ሺെ∆ݐሻ ൌ ݁௖∆௧	݂ሺݑ௡ିଵሻ  , ݃ሺ0ሻ ൌ ݂ሺݑ௡ሻ  , ݃ሺ∆ݐሻ ൌ ݁ି௖∆௧݂ሺݑ௡ାଵሻ  ,the third 
approximation to ݃ሺ߬ሻ is  
 ܲሺ߬ሻ ൌ ݁ି௖∆௧݂ሺݑ௡ାଵሻሾ߮ሺିߝଵሻ ൅ ߮ሾିߝଵ, ଴ሿሺ߬ߝ െ ଵሻିߝ ൅ ߮ሾିߝଵ, ,଴ߝ ଵሿሺ߬ߝ െ ଵሻሺ߬ିߝ െ
଴ሻሿߝ ൅ ݂ሺݑ௡ሻሾ߮ሺିߝଵሻ ൅ ߮ሾିߝଵ, ,଴ߝ ଵሿሺ߬ߝ െ ଵሻሺ߬ିߝ െ ଴ሻሿߝ ൅
݁௖∆௧݂ሺݑ௡ିଵሻሾ߮ሺିߝଵሻ ൅ ߮ሾିߝଵ, ଴ሿሺ߬ߝ െ    ଵሻሿିߝ
         0 ൑ ߬ ൑   .  ݐ∆
 
3. Given ݃ሺെ2∆ݐሻ ൌ ݁ଶ௖∆௧݂ሺݑ௡ିଶሻ, ݃ሺെ∆ݐሻ ൌ ݁௖∆௧݂ሺݑ௡ିଵሻ, ݃ሺ0ሻ ൌ ݂ሺݑ௡ሻ, 
 ݃ሺ∆ݐሻ ൌ ݁ି௖∆௧݂ሺݑ௡ାଵሻ, the fourth order approximation to ݃ሺ߬ሻ is  
 ܲሺ߬ሻ ൌ ݁ି௖∆௧݂ሺݑ௡ାଵሻሾ߮ሺିߝଵሻ ൅ ߮ሾିߝଵ, ଴ሿሺ߬ߝ െ ଵሻିߝ ൅ ߮ሾିߝଵ, ,଴ߝ ଵሿሺ߬ߝ െ ଵሻሺ߬ିߝ െ ଴ሻߝ ൅
߮ሾିߝଵ, ,଴ߝ ,ଵߝ ଶሿሺ߬ߝ െ ଵሻሺ߬ିߝ െ ଴ሻሺ߬ߝ െ ଵሻሿߝ ൅ ݂ሺݑ௡ሻሾ߮ሺିߝଵሻ ൅ ߮ሾିߝଵ, ,଴ߝ ଵሿሺ߬ߝ െ ଵሻሺ߬ିߝ െ
଴ሻߝ 	൅ 	߮ሾିߝଵ, ,଴ߝ ,ଵߝ ଶሿሺ߬ߝ െ ଵሻሺ߬ିߝ െ ଴ሻሺ߬ߝ െ ଵሻሿߝ ൅ ݁௖∆௧݂ሺݑ௡ିଵሻሾ߮ሺିߝଵሻ ൅ ߮ሾିߝଵ, ଴ሿሺ߬ߝ െ
ଵሻିߝ ൅ ߮ሾିߝଵ, ,଴ߝ ,ଵߝ ଶሿሺ߬ߝ െ ଵሻሺ߬ିߝ െ ଴ሻሺ߬ߝ െ ଵሻሿߝ ൅ ݁ଶ௖∆௧݂ሺݑ௡ିଶሻሾ߮ሺିߝଵሻ ൅ 	߮ሾିߝଵ, ଴ሿሺ߬ߝ െ
ଵሻିߝ ൅ ߮ሾିߝଵ, ,଴ߝ ଵሿሺ߬ߝ െ ଵሻሺ߬ିߝ െ  . ଴ሻሿߝ
 

3. Stability analysis of IIF 
  
The steady condition is achieved from a dynamic evolution by using standard integration 

factor methods, which has an error of order ሺ∆ݐ௣ሻ. In addition, discretization errors are also related 
to the space [3]. Since the fixed points of the numerical scheme are not preserved, consequently 
the following decoupled linear problem cannot be used directly,  
 

௧ݑ  ൌ െݑݍ ൅ ݍ  ,ݑ݀ ൐ 0 .      (12) 
 

For the IIF methods, the steady state of ODE system and the stability regions are 
examined with respect to the diffusion and the reaction [9, 10]. The boundaries of the stability 
region, which consist of a family of curves for different values of ݐ∆ݍ are shown, based on the test 
problem (12) for the second and third-order IIF methods. 

The second order IIF (11) is applied to equation (12), and then substituting ݑ௡ ൌ ݁௜௡ఏ into 
the resulting equation, the following equation is derived 
 

 ݁௜ఏ ൌ ݁ି௤∆௧ ቀ1 െ
ଵ

ଶ
ቁߣ െ

ଵ

ଶ
 ௜ఏ,      (13)݁ߣ

 
where ߣ ൌ ݐ∆݀  has a real part ߣ௥  and imaginary part ߣ௜  . Thus the equation for ߣ௥  and ߣ௜  are 
considered as follows 
 

௥ߣ  ൌ
ଶሺ௘షమ೜∆೟ିଵሻ

ሺଵି௘ష೜∆೟ሻమାଶሺଵାୡ୭ୱఏሻ௘ష೜∆೟
 , 

 (14)  
 

௜ߣ  ൌ
ିସሺ௦௜௡ఏሻ௘ష೜∆೟

ሺଵି௘ష೜∆೟ሻమାଶሺଵାୡ୭ୱఏሻ௘ష೜∆೟
 . 

 
Since ݍ ൐ 0, then  ߣ௥ ൏ 0 , which resulted for 0 ൑ ߠ ൑  Then, the second order IIF is A-stable . ߨ2
because the stability region has been included in the complex plane for ߣ with  ߣ௥ ൏ 0 .  
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Fig. 1: Stability regions (exterior of the closed curves) for the second order with ݐ∆ݍ ൌ 0.5, 1, 2. 

 
 

In Figure.1 , the stability region is designed as such that the exterior of the closed curves 
are located on the complex plane with ߣ௥ ൏ 0,  for ݐ∆ݍ ൌ 0.5, 1, 2. 

Note that in (14), in the limit  ݍ → 0 , the stability region agrees with the domain ߣ௥ ൏ 0 , 
while in the limit ݍ → ∞ , the stability region approaches the whole complex plane excluding the 
point ሺെ2,0ሻ . 

The third- order IIF (or IIF3) scheme is considered 
 

௡ାଵݑ  ൌ ݁௖∆௧ݑ௡ ൅ ሺെݐ∆
ଵ

ଶ
	݂ሺݑ௡ାଵሻ െ

ଵ

ଶ
݁௖∆௧݂ሺ	ݑ௡ሻ െ

ଵ

ଶ
	݁ଶ௖∆௧݂ሺݑ௡ିଵሻሻ .   

          (15) 
 

The same approach is applied, so that the equation for ߣ is found to be 
 

ߣ  ൌ
௘೔ഇି௘ష೜∆೟

ି
భ
మ
௘೔ഇି

భ
మ
௘ష೜∆೟ି

భ
మ
௘షమ೜∆೟ష೔ഇ

 .      (16) 

 
The following complex planes show the step by step stability region for ߣ in (16) for 

different values of ݐ∆ݍ. 
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Fig. 2: Stability regions for the third- order IIF scheme with  ݐ∆ݍ ൌ 0, 0.45 . 

 
Fig. 3: Stability regions for the third- order IIF scheme with ∆ݐ ൌ 0.5, 0.6 . 

 

 
 

Fig. 4: Stability regions for the third -order IIF scheme with  ݐ∆ݍ ൌ 1, 1.5 . 
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Fig. 5: Stability regions for the third - order IIF scheme with  ݐ∆ݍ ൌ 2, 2.5. 
 

 
 

Fig. 6: Stability regions for the third order IIF scheme with ݐ∆ݍ ൌ 3, 3.5. 
 
 

In IIF3, all the Figures above show the step by step stability region for the third-order 
scheme, which finally becomes A-stable. Clearly, the size of the stability region is considered very 
sensitive to the value of  ݐ∆ݍ, since it depends on the values of ݐ∆ݍ. It is found that the stability 
region is maintained by increasing	ݐ∆ݍ. Thus when	ݍ → ∞, the stability region in the complex 
plane approaches a point in the real axis. 

As a result, the IIF method gives rise to the good stability properties as compared to the 
explicit integration factor methods and other exponential time difference schemes. 

 
4. Conclusion 
 
Even though, there have been attempts to treat the nonlinear reaction equations implicitly 

using implicit–explicit Runge–Kutta schemes [15, 16, 17], the diffusion term in these methods is 
still treated explicitly. 
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In this paper, we have presented a class of methods, which eliminates both restrictions on 
the setting of a linear stability theory. Moreover, in the new techniques, as a result of the implicit 
treatment of the nonlinear reaction equation, the nonlinear system has the same size as the number 
of original differential equations. Likewise, for systems in higher spatial dimensions or systems 
involving high-order derivatives, the new methods would be more advantageous than the studied 
one-dimensional system with diffusions. In addition, a fully implicit method is required for solving 
very large nonlinear systems, which depend on two- or three-dimensional spatial discretizations. 
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