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The Hosoya polynomial of a molecular graph G is defined as 
where the sum is over all unordered pairs {u,v} of distinct 

vertices in G. The aim of this paper is to present a new algorithm for computing Hosoya 
polynomial of TUC4C8(S) nanotubes.   
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1. Introduction  
 
One of the main distinctive characteristics of modern chemistry is the use of theoretical 

tools for the molecular modeling of physicochemical processes, chemical reaction, medicinal and 
toxicological events, etc., in which chemicals are involved. Topological indices are one of the 
main theoretical tools for studying molecular properties of chemical compounds. Here, a 
topological index is a real number that is derived from molecular graphs of chemical compounds. 
Such numbers based on the distances in a graph are widely used for establishing relationships 
between the structure of molecules and their physico-chemical properties. It is easy to see that the 
number of atoms and the number of bonds in a molecular graph are topological index. The first 
non trivial topological index was introduced early by Wiener.1 He defined his index as the sum of 
distances between any two carbon atoms in the molecules, in terms of carbon-carbon bonds. We 
encourage the reader to consult papers2,3 and references therein, for further study on the topic. 

Let G be a simple molecular graph without directed and multiple edges and without loops, 
the vertex and edge sets of which are represented by V(G) and E(G), respectively. If e is an edge 
of G, connecting the vertices u and v then we write e = uv. The distance between a pair of vertices 
u and v of G is denoted by d(u,w). Thus, we can redefine the Wiener index of a graph G as W(G) 
= ∑{x,y}⊆V(G)d(x,y). 

The Hosoya polynomial of a molecular graph G is defined as 
where the sum is over all unordered pairs {u,v} of distinct vertices in 

G.4,5 Suppose D = [dij] denotes the distance matrix of G, where dij is the length of a minimal path 
connecting the ith and jth vertices of G. Then one can see that W(G) = 1/2∑i,jdij and H(G,x) = 
1/2∑i,j . 

,x  x)H(G, )G(V}v,u{
v)d(u,∑ ⊆=

ijdx
Diudea and his co-authors6-9 was the first scientist considered topological indices of 

nanostructures into account. In some research paper, he and his team computed the Wiener index 
of armchair, zig-zag and TUC4C8(R/S) nanotubes. One of us (ARA) continued this program to 
compute the Wiener index of a polyhex and TUC4C8(R/S) nanotori.10-15 In this paper we continue 
this program to compute the Hosoya polynomial of a TUC4C8(S) nanotube. Our notation is 
standard and mainly taken from the book of Trinajestic16 and papers by Taeri and his co-authors.17-

19. 
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2. Results 
 
In this section an exact formula for the Hosoya polynomials of TUC4C8(S) nanotubes are 

derived, Figure 1. Since ),G(W|))x,G(W(dx/d 1x ==  the Wiener index of these nanomaterials 
are also computed.  

Suppose T is 2–dimensional lattice of TUC4C8(S)[m,n], where m is the number of rows 
and n is the number of columns. Choose eight base vertices xk(1,1), xk∈{ a1, b1, c1, d1, a2, b2, c2, 
d2}, Figure 2. We partition V(T) into eight parts as P = {A1, A2, B1, B2, C1, C2, D1, D2} where 
Xj∈P and Xj = {xk(i,t): 1 ≤ i ≤ m,1 ≤ t ≤ n,k = j}. To compute D(T), we must calculate 
matrices . For example  is a matrix in which its entries are the distances from a1(1,1) 
to all of vertexes A1. The first row of D(T) is the all entries of eight matrices of vertex a1(1,1), and 
other rows are obtained similarly. We notice that making use of symmetry in T, we don't need to 
investigate the vertices with subscript 2. This fact has been shown in Figure 2. Hence the 
computation of sixty four matrices presented above, decreases to thirty two matrices.  
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If we show this matrix by [ ]
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=  where is ith row of the matrix 

and k∈{1,2}. We can obtain other matrices for the tth row (2 ≤ t ≤ m) and first column of T. For 
instance, we consider the case of a1(t,1). Then,  
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Similarly we acquire other matrices of the first column. Notice that finding the matrices of other 
columns are the same and is omitted. Now we enumerate the entries of distance matrix D(T). 
Define αi, (1 ≤ i ≤ m), by  
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Then we can see that the times of repeating sth row matrix  is the number of columns in T 
multiplied by the number of members of the set {αj(j+s−1),αj(j−s+1) : j, j+s−1, j−s+1≤ m }. 
Consequently, for  we obtain the following polynomial: 
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So the Wiener polynomial of T is ( )∑=

1j
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Table 1.  ]d[D ij
A

)1,1(a
1

1
=

 

j = 1 
2 ≤ j ≤ n/2+1 (n|2) 

2 ≤ j ≤(n+1)/2 (n∤2) 
1 ≤ j ≤ n/2+1 (n|2) 

1 ≤ j ≤(n+1)/2 (n∤2) i = 1 
d11=0 dij = d1(j-1) + 4 

i > 1 
i ≤ j         dij = d(i-1)j + 2 
i > j         dij = d(i-1)j + 4 

dij = di(n-j+2) where [n/2+1< j ≤ n & (n|2)] or [(n+1)/2< j ≤ n & (n∤2)] 
 
• It is clear that three matrices 1

1

B
)1,1(bD  , 1

1

B
)1,1(cD  and 1

1

D
)1,1(dD  are equal to 1

1

A
)1,1(aD . 

• If we add one to all entries of 1

1

A
)1,1(aD , we obtain 1

1

C
)1,1(bD . 

• The rows from  two to m of 1

1

A
)1,1(dD , are equal to the rows from one to (m−1) of 1

1

A
)1,1(aD . 

Moreover, the first and the second row are equal, except the first entry of first row which is equal 
to 3.  
•  

Table 2. ]s[D ij
B

)1,1(a
1

1
= . 

 

j = 1 j = 2 2 ≤ j ≤ n/2+1 (n|2) 
2 ≤ j ≤(n+1)/2+1 (n�2) j = 1 2 ≤ j ≤ n/2+1 (n|2) 

2 ≤ j ≤(n+1)/2+1 (n�2)i = 1 
s11 = 1 s12 = 3 s1j = s1(j-1) + 4 

i > 1
si1 = s(i-1)1 + 4 i-1 ≤ j      sij = s(i-1)j + 2 

i-1 > j      sij = s(i-1)j + 4 
Then sij = si(n-j+3) where [n/2+1< j ≤ n & (n|2)] or [(n+1)/2< j ≤ n & (n∤2)] 

 
•  Adding one to all entries 1

1

B
)1,1(aD , we obtain 1

1

C
)1,1(aD . 

• The first and second row of 1

1

B
)1,1(dD are equal; also the rows from two to m are equal to the 

rows from one to (m−1) of 1

1

B
)1,1(aD .  

• The first row of 1

1

C
)1,1(dD  and the first row of 1

1

B
)1,1(aD are the same; the second until mth rows 

of this matrix, obtained by adding the number two to all entries of the rows from one to (m−1) of 
1

1

B
)1,1(aD . 

• For columns 1≤ j ≤ n/2+1 (n is even) or 1≤ j ≤ (n+1)/2 (n is odd), we add entries of 1

1

B  
by 2. Then for n/2+1 < j ≤ n (n is even) or (n+1)/2 < j ≤ n (n is odd) we define vij = vi(n-j+2) and so 

]v[ . 
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• The rows from two to m of 1

1

B
)1,1(cD  are equal to the rows from one to (m−1) of 1

1

D
)1,1(aD ; 

and the first entry of the first row is one and remaining entries are equal to the second row. 
• For columns 1≤ j ≤ n/2 (n is even) or 1≤ j ≤ (n+1)/2 (n is odd), we add one to the entries of 

1

1

D
)1,1(aD  and for columns n/2 < j ≤ n (n is even) or (n+1)/2 < j ≤ n (n is odd) we add -1 ot the entries 

of 1

1

D
)1,1(aD to obtain 2

1

D
)1,1(aD . 

• The first and second rows of ]w[D ij  are equal, except the last entry of the first 
row which is equal to 2; and the rows from two to m are got by the equation wij = s(i-1)(n-j+1).  

B
)1,1(c
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Table 3.  ]r[D ij
A

)1,1(a
2

1
=

 

j = 1 j = n 
2 ≤ j ≤ n/2 (n|2) 

2 ≤ j ≤ (n+1)/2 (n∤2) 
n/2 < j < n  (n|2) 

(n+1)/2 < j < n (n∤2) i = 1 
r11 = 1 r1n = 3 r1j = r1(j-1) + 4 r1j = r1(j+1) + 4 

1 ≤ j ≤ n/2         (n|2) 
1 ≤ j ≤ (n+1)/2 (n∤2) 

n/2+1 ≤ j ≤ n (n|2) 
(n+1)/2+1 ≤ j ≤ n (n∤2) i > 1 

i ≤ j        rij = r(i-1)j + 2 
i > j        rij = r(i-1)j + 4 

i ≤ n-j+2  rij = r(i-1)j + 2 
else          rij = r(i-1)j + 4 

 
• The matrix 2

1

D
)1,1(dD is equals to 2

1

A
)1,1(aD . 

• In matrix 2

1

A
)1,1(dD  the first entry is 4, and other entries of the first row are equal to entries 

in the second row. We also add one to entries in the first row until (m−1)th row of 2

1

A
)1,1(aD  to obtain 

the rows from two to m of this matrix. 
• The entries of ]u[  are obtained from 2

1

A
)1,1(aD the equation uij = ri(n-j+1)  D ij

B
)1,1(b

2

1
=

• The matrix 2

1

C
)1,1(cD  is obtained from above equation. 

• If we add one by all entries of 2

1

B
)1,1(bD then we acquire 2

1

C
)1,1(bD . 

 
Table 4. . ]e[D ij

B
)1,1(a

2

1
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j = 1 
2 ≤ j ≤ n/2        (n|2) 
2 ≤ j ≤ (n+1)/2 (n∤2) 

1 ≤ j ≤ n/2         (n|2) 
1 ≤ j ≤ (n+1)/2 (n∤2) i = 1 

e11=2 e1j = e1(j-1) + 4 
i > 1 

i ≤ j         eij = e(i-1)j + 2 
i > j         eij = e(i-1)j + 4 

eij = ei(n-j+1) where [n/2 < j ≤ n & (n|2)] or [(n+1)/2< j ≤ n & (n∤2)] 
 
• The matrix 2

1

D
)1,1(cD  is equal to 2

1

B
)1,1(aD . 

• Two matrices 2

1

C
)1,1(aD  and 2

1

D
)1,1(bD  achieved by adding 1 to each entry of 2

1

B
)1,1(aD .  

• The first and second rows of 2

1

A
)1,1(bD  and 2

1

C
)1,1(dD  are equal and the second until last row of 

these matrices are computed by adding 2 to the first until (m−1)th row of 2

1

B
)1,1(aD . 

• The first and second rows of matrices 2

1

A
)1,1(cD  and 2

1

B
)1,1(dD  are the same and the rows from 

two to m are equal to the rows from one to (m−1) of 2

1

C
)1,1(aD . 

• The matrix ]z[  obtained from the matrix 2

1

B
)1,1(aD by relations below;  D ij

D
)1,1(c

1

1
=

if 1≤ j ≤ n/2 (n is even) or 1≤ j ≤ (n+1)/2 (n is odd) then zij = eij – 1,  
and if n/2 < j ≤ n (n is even) or (n+1)/2 < j ≤ n (n is odd) then zij = eij + 1. 
• By adding 1 to all entry of ]d[  we receive to the matrix ]d[ . D ij

D
)1,1(c

1

1
= D ij

D
)1,1(b

1

1
=

• The first and second rows of 1

1

A
)1,1(cD  are equal; and the second until mth row are equal to 

the first until (m−1)th row of 1

1

D
)1,1(bD . 
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• The first row of 1

1

A
)1,1(bD  is equal to the first row of 1

1

D
)1,1(cD , and the rows from two to m are 

obtained by adding 2 to entries of  the rows from one to (m−1) of 1

1

D
)1,1(cD . 

 
 

 
 
 

Fig. 1. 3D-Representation of an TUC4C8(S) 
Nanotube. Fig. 2. The basic vertex of T2 

 
 
 

Fig. 3. The 2–Dimensional Fragments of an 
TUC4C8(S) Nanotube. Fig. 4. A Laabeling for T2 

a

d1

b1

c1

2

 
 

References 
 

  [1] H. Wiener, J. Am. Chem. Soc. 69, 17 (1947). 
  [2] A. A. Dobrynin, R. Entringer, I. Gutman, Acta Appl. Math., 66, 211 (2001). 
  [3] A. A. Dobrynin, I. Gutman, S. Klavžar, P. Zigert, Acta Appl. Math., 72, 247 (2002). 
  [4] H .Hosoya, Discr. Appl. Math. 19, 239 (1988). 
  [5] B. E. Sagan, Y.-N. Yeh, P. Zhang, Int. J. Quant. Chem. 60, 959 (1998). 
  [6] M. V. Diudea M. V., Parv B., Kirby E. C., MATCH Commun. Math. Comput. Chem. 47,  
        53 (2003). 
  [7] M. V. Diudea, Bull. Chem. Soc. Japan 75, 487 (2002). 
  [8] M. V. Diudea, MATCH Commun. Math. Comput. Chem. 45, 109 (2002). 
  [9] M. V. Diudea, P. E. John, MATCH Commun. Math. Comput. Chem. 44, 103 (2001). 
[10] S. Yousefi, A. R. Ashrafi, J. Math. Chem. 42, 1031 (2007). 
[11] S. Yousefi, A. R. Ashrafi, Curr. Nanosci. 4, 181 (2008). 
[12] A. R. Ashrafi, S. Yousefi, Nanoscale Res. Lett. 2, 202 (2007). 
[13] S. Yousefi, A.R. Ashrafi, MATCH Commun. Math. Comput. Chem. 56, 169 (2006). 
[14] A. R. Ashrafi, S. Yousefi, MATCH Commun. Math. Comput. Chem. 57, 403 (2007).  
[15] S. Yousefi, H. Yousefi-Azari, A. R. Ashrafi, M. H. Khalifeh, J. Sci. Univ. Tehran 33, 7 
(2008). 
[16] N. Trinajstic, Chemical Graph Theory, CRC Press, Boca Raton, FL, 1992. 

Column n column3 column2 column1 

row m 

row 1 

row 2 

row 3 

a1

2 

c2 
d2 

Base vertex  

1 

b



458 
 
[17] A. Heydari, and B. Taeri, MATCH Commun. Math. Comput. Chem. 57, 463 (2007). 
[18] M. Eliasi, B. Taeri, J. Serb. Chem. Soc. 73, 311 (2008). 
[19] M. Eliasi, B. Taeri, J. Comput. Theor. Nanosci. 4, 1174 (2007). 


