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The dye-sensitized solar cells (DSSC) have been regarded as one of the most promising 
new generation solar cells. Tremendous research efforts have been invested to improve the 
efficiency of solar energy conversion which is generally determined by the light harvesting 
efficiency, electron injection efficiency and undesirable electron lifetime. In this review, 
various characteristics of dye-sensitized nanostructured TiO2 solar cells, such as working 
principle, electron transport and electron lifetime, were studied. The review avoids 
detailed mathematical and spectroscopic discussion, but rather tries to summarize the key 
conclusions relevant to materials design.  
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1. Introduction 
 
About 20 years ago, Grätzel and O’Regan published an article in Nature [1] that described 

a remarkably efficient photochemical solar cell based on the dye sensitization of mesoporous 
nanocrystalline titanium dioxide films. This new type of solar cell technology offered the promise 
of achieving moderate efficiency devices at ultra-low costs.  In traditional photovoltaic cells, the 
semiconductor functions to simultaneously (1) absorb visible light and (2) mediate electrons [2]. In 
contrast, DSSC are not limited by the light harvesting ability of the semiconductor, in fact, most 
are optically transparent. The sensitization of these semiconductors to visible light involves 
interfacial electron transfer following selective excitation of a surface-bound molecular 
chromophore [3]. Such a photoinduced charge-separation process is a key step for solar energy 
conversion. Commonly studied chromophores, which will be referred to as dyes or sensitizers, 
include organic molecules and transition metal coordination compounds [ 4 ]. A schematic 
representation of a typical DSSC is illustrated in Fig.1 [5]. In the most common and most efficient 
devices to date, light is absorbed by a ruthenium complex, such as (Bu4N)2[Ru(4,4'-dicarboxy-
2,2'-bipyridine)2(NCS)2][6], that is bound to a metal oxide photoanode via carboxylate moieties. 
Sensitized electrodes with TiO2 show both ultrafast electron injection rates and slow 
recombination rates required to make efficient DSSCs [7]. The 50 - 70 % porosity allows facile 
diffusion of redox mediators within the film so they can react with surface-bound sensitizers for 
efficient regeneration of the photoanode. The band gap of TiO2 is 3.2 eV, corresponding to light 
absorption below 380 nm. Because of its optical transparency to visible light, sensitization with 
molecular chromophores is required to harvest sunlight. Following light absorption, the exciton is 
split across the dye/nanoparticle interface in femtoseconds to picoseconds. The injected electron 
diffuses through the sintered particle network to be collected at the TCO, while the oxidized dye is 
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Fig.2. Operating principles of DSSC 
 

 
At the heart of the system is a mesoporous oxide layer composed of nanometer-sized 

particles, which have been sintered together to allow electronic conduction to take place. The 
material of choice has been TiO2 (anatase) although alternative wide band gap oxides such as ZnO, 
SnO2 and Nb2O5 have also been investigated [10]. Attached to the surface of the nanocrystalline 
film is a monolayer of a sensitizer. The high surface area of the mesoporous metal oxide film is 
critical to efficient device performance as it allows strong absorption of solar irradiation to be 
achieved by only a monolayer of adsorbed sensitizer [11]. The use of a dye monolayer avoids any 
requirement for excited state (or “exciton”) diffusion to the dye/metal oxide interface. It also 
avoids the acceleration in non-radiative excited state decay to ground state that is often associated 
with thicker molecular films. The use of a mesoporous film results in a dramatic enhancement of 
the interfacial surface area by more than 1000-fold for a 10mm thick film. This leads to high 
visible light absorbance from the monolayer of adsorbed dye [12]. 

 
 
3. Electron Transport through nanostructured TiO2  

 
The most extensively applied and successful material by far is the high bandgap 

semiconductor TiO2 (bandgap: 3.2 eV). The often translucent nanocrystalline layers consist of 
interconnected colloidal particles in the size range of 15–30nm with a layer thickness typically 
between 5 and 15 μm [13]. The best photovoltaic performances have been obtained using layers 
with enhanced haze and by application of a TiCl4 posttreatment [14]. Enhanced haze is achieved 
by introduction of scattering centers (large TiO2 particles) inside or on top of the film with the 
smaller particles [15]. The colloidal TiO2 materials are prepared by a hydrothermal sol-gel method 
in acidic or basic aqueous media and the layers are generally applied by industrially relevant 
processes such as screen-printing. For a quantitative removal of organic additives (binders and 
dispersants) after printing, processing temperatures between 450 ◦C and 550 ◦C are typically 
required during the annealing of the films. An SEM image of the top view  of a typical TiO2 film is 
shown here in Fig. 3[16]. 
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In its briefest form, the occupation of sub bandgap states at energy EA is given by the 
Fermi- Dirac distribution function, and the density of carriers at this energy is, nA=NAFA, where NA 
is the total number of available sites at this energy(Eq. 7). 
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If we consider that electrons can only be transported via the conduction band, then we need to 
consider how the density of electrons in the conduction band (nCB) varies with the position of the 
quasi-Fermi level for electrons (EFn). Specifically, [22] with the conductivity of the film being 
proportional to nCB(Eq. 8). 
 

											nେ ൌ Nେ݁
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್்
ൗ

                                                  (8) 
 

The average electron mobility then depends upon the probability of the electrons being in 
the conduction band, and thus increases as the quasi-Fermi level for electrons approaches the 
conduction band energy. 

Knowledge of the exact location of the “transport-limiting” traps is likely to be critically 
important in order to fully understand the transport mechanism in this material. The location of the 
traps has been thought to be in the bulk of the crystals, [18] at the interparticle “grain 
boundaries”,[23] and on the surface of the nanoparticles[24,25]. 

 
4. Electron dynamic in DSSC 
In order to understand and advance DSSC technology, the kinetics and dynamics of charge 

movement have been examined in detail by many researchers, both experimentally and via 
computational modeling. The transfer of electrons and holes across several, often non-ideal and ill 
defined, heterogeneous interfaces is exceptionally complex. As such, the kinetics is sensitive to 
many subtle factors such as excitation wavelength and dye loading conditions [26,27]. Since the 
kinetics are complicated and don’t always conform to a simple rate law, rate constants aren’t 
strictly meaningful. Herein we will follow the convention of reporting half-life times, Table 1, in 
order to appreciate the different time scales of the relevant processes that span nine orders of 
magnitude. 
 

Table 1. Kinetic processes in DSSC [28]. 
 

process Half-life (second) 
Injection 150 ps 
Relaxation 12 ns 
Regeneration 1 µs 
Recombination 3 µs 
Charge Transport 100 µs 
Charge Interception 1 ms 
 
 

For each time constant, the value shown in Fig.6 is the most current literature datum 
measured on a standard cell under operating conditions, preferably at the maximum power point 
(≈700 mV)[28-33]. In order to relate these processes to PV performance, the charge dynamics are 
best viewed on a modified energy level diagram, Fig.5. 
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Fig.5. Kinetic processes in DSSC [28]. 
 
 

The convenience of reporting half times of reaction rates may result in the misconception 
that there is considerable room for improvement by minimizing kinetic redundancy. For example, 
it appears that charge injection is almost 100 times faster than the competing process, relaxation of 
the excited state. If this were the case, then VOC could be substantially enhanced by shifting the 
conduction band edge of TiO2 negative without loss of charge collection efficiency. That this is 
not the case (or at least not entirely) is due to the dispersive kinetics of charge injection. In fact, 
studies of competing processes have shown that in its most efficient configuration a DSSC has 
comparatively little kinetic redundancy. This point may be visualized in Fig.6, in which order-of-
magnitude estimates of area normalized rates at the maximum power point are taken from 
literature and presented as Gaussian curves on a logarithmic time scale [29-34]. 
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the surrounding electrolyte composition, or by applying the external bias [35,39]. Experiments also 
show that by modifying the dye structure one can switch between electron transport-limited 
dispersive recombination dynamics and interfacial electron transfer-limited exponential 
recombination dynamics [40].  

 
6. Conclusion 
 
Dye sensitized solar cells are photoelectrochemical solar devices, currently subject of 

intense research in the framework of renewable energies as a low-cost photovoltaic device. We 
have reviewed our recent theoretical work on the kinetics and mechanism of electron injection and 
charge recombination in dye-sensitized nanocrystalline semiconductors. This review has hopefully 
given the reader some insights into the parameters determining the efficiencies of electron 
injection and dye regeneration in dye sensitized photoelectrochemical solar cells. 
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