
Digest Journal of  Nanomaterials and Biostructures                   Vol. 7, No. 2, April - June 2012, p. 501 - 510 
 
 

 
SYNTHESIS AND SENSING CHARACTERISTICS OF AB-TYPE BLOCK 

COPOLYMERS WITH FLUORESCENT PROBE 
 
 

VIOLETA MELINTE*, TINCA BURUIANA, ANDREEA CHIBAC, EMIL C. 
BURUIANA 
Petru Poni Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, 
700487 Iasi, Romania 

 
 

This article reports the synthesis through atom transfer radical polymerization (ATRP) of 
fluorescent block copolymers using the poly(ethylene oxide) containing terminal bromine 
atom as macroinitiator and hydrophilic block, while the hydrophobic block consists of n-
butyl methacrylate and 2-methacryloyloxyethylcarbamoyloxymethylpyrene taken in 
various molar ratios. The characterization of the polymers was achieved by Fourier-
transform infrared spectroscopy (FTIR), 1H-nuclear magnetic resonance (1H NMR), gel 
permeation chromatography (GPC), differential scanning calorimetry (DSC), 
thermogravimetric analysis and atomic force microscopy (AFM). Thus, the molecular 
weight and the molar composition of the block copolymers were estimated by 1H NMR 
spectrometry, and were further confirmed by GPC analysis. Additionally, the fluorescence 
response of the pyrene-containing block copolymers towards certain metal ions (Pb2+, 
Co2+, Hg2+, Ni2+, UO2

2+, Zn2+), nitromethane and iodide anions in water was investigated, 
the study demonstrating that the synthesized block copolymers are viable candidates as 
fluorescent receptors for uranyl ions that can discriminate low concentrations of UO2

2+. 
The significant effect of iodide ions on the fluorescence intensity of the block copolymers 
in solution or in film state could be exploited in the development of ‘turn-off’ or ‘turn-on’ 
chemosensors for this type of analyte. 
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1. Introduction 
 
Block copolymers consisting of two or more blocks of different nature and covalently 

attached, usually lead to interesting physicochemical properties of the resulted materials [1, 2]. In 
particular, amphiphilic block copolymers are recognized for their ability to exhibit a complex self-
assembling behaviour when they are dissolved into a selective solvent for one block, creating thus 
the possibility to spontaneously segregate in well-defined special morphologies, which can 
improve their properties and can guide, in proper conditions the formation of nanoparticles, 
nanoshells or nanotubes used in top biomedical fields [3, 4]. Until now, numerous studies have 
been devoted to the synthesis and characterization of biocompatible polymers based on 
poly(ethylene oxide), given its excellent water solubility, chain mobility, and non-
immunogenicity, so that in combination with various hydrophobic structures (poly(amino acid), 
poly(meth)acrylates, polycaprolactone) provided complex macromolecular architectures [5-8]. 

On the other hand, an important aspect concerning the synthesis of a variety of 
amphiphilic block copolymers with controlled structure that can self-assemble in aqueous solution 
is associated with the recent development in living/controlled radical polymerization methods. 
Hence, techniques such as atom transfer radical polymerization (ATRP) [9], reversible additional 
fragmentation chain transfer (RAFT) [10], nitroxide-mediated polymerization (NMP) [11] and 
single-electron-transfer living radical polymerization (SET-LRP) [12], or combinations of them 
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[13-15] manifest many positive features, including the ability to control the composition and 
molecular weight of the block copolymers prepared through such methodologies. Over time, since 
its discovery by both Matyjaszewski and Sawamoto in 1995 [16, 17], ATRP proved to be an 
efficient route for the synthesis of polymers with designed structures in a controlled manner [18, 
19], especially using the Cu-based catalytic system and a large range of functional initiators [20]. 
Thus, it has been successfully employed in the obtaining of tailored block copolymers, like block 
and graft copolymers, star polymers, hyperbranched polymers, and dendrimers based on all type of 
acrylate or methacrylate monomers [21]. 

Modern research actively investigates the chemosensors field in order to extend innovative 
devices that convert the molecular recognition into highly sensitive and easily detected signals. 
Accordingly, numerous chemosensors for metal ions were described as being able to correlate 
metal ions concentration with changes in spectroscopic characteristics of the analyzed samples [22, 
23]. Recognized for their spectroscopic properties of large molar extinction coefficient and high 
fluorescence quantum yield, pyrene derivatives are excellent candidates for the design of some 
sensors with high sensitivity [24]. Moreover, the physical/covalent attachment of fluorescent 
molecules to polymer samples has been advantageously explored for the generation of fluorescent 
nanostructures used in molecular imaging [25, 26]. 

Taking advantage of these findings, the present paper is focused on the synthesis via atom 
transfer radical polymerization of new amphiphilic block copolymers based on poly(ethylene 
glycol) hydrophilic component and hydrophobic n-butyl methacrylate, in which pyrene units are 
covalently included on the hydrophobic segment. The structural characterization of the block 
copolymers was achieved through specific methods (1H NMR, FTIR, TGA, DSC), whereas the 
fluorescence response of pyrene fluorophore in the presence of various heavy metal cations, 
nitromethane or potassium iodide has been investigated. 

 
2. Experimental 
 
2.1. Materials 
Poly(ethylene glycol) methyl ether (Mw = 2000), 2-bromoisobutyryl bromide, 

triethylamine, 1-pyrene methanol, 2-isocyanatoethyl methacrylate, n-butyl methacrylate (BMA), 
CuBr, N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (PMDETA), were purchased from Sigma 
Aldrich Chemical Co. and used without further purification. Potassium iodide (KI), nitromethane, 
lead (II) acetate trihydrate, cobalt (II) acetate tetrahydrate, mercury (II) acetate, nickel (II) acetate 
tetrahydrate, uranyl acetate dihydrate, zinc acetate dihydrate were purchased from Sigma Aldrich 
Chemical Co. and used without further purification. 

 
2.2. Synthesis of the PEO macroinitiator 
The preparation of the macroinitiator based on poly(ethylene oxide) that contains bromine 

atom (PEO-Br) was performed accordingly to procedure previously reported [27]: into a three-
neck round-bottom flask equipped with condenser, dropping funnel, gas inlet/outlet, and a 
magnetic stirrer 0.7 mL (5 mmol) triethylamine in 10 mL of dry CH2Cl2 were cooled to 0 °C and 
0.64 mL (5 mmol) 2-bromoisobutyryl bromide in 10 mL CH2Cl2 were added. To the resulting 
mixture, 10 g (5 mmol) PEG methyl ether (Mw = 2000) dissolved in 25 mL methylene chloride 
were dropwise added at such a rate that the reaction temperature was maintained at 0 °C. Then, the 
temperature was risen to room temperature and the mixture was kept under stirring for 24 h. The 
solution was filtered, evaporated to half and the PEO-Br derivative was obtained by precipitation 
in cold diethyl ether and dried under vacuum. Yield 8.9 g (83 %). 

1H NMR (CDCl3,  ppm): 3.64 (m, 180H, O-CH2-CH2-O); 3.38 (s, 3H, CH3-O-CH2-); 1.93 
(s, 6H, CH3-C-Br). FTIR (KBr, cm-1): 2872 (C-H); 1735 (C=O); 1112 (C-O-C); 531 (C-Br). 

 
2.3. Synthesis of 2-methacryloyloxyethylcarbamoyloxymethylpyrene (MAPy) 
To a solution of 1-pyrene methanol (3 g, 13 mmol) in methylene chloride, 1.86 mL (13 

mmol) 2-isocyanatoethyl methacrylate was dropwise added in the presence of dibutyltindilaurate 
used as catalyst. The reaction mixture was stirred at 40 oC for 24 h under a nitrogen atmosphere, 
the course of the reaction being followed through the infrared absorption of the isocyanate 
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stretching band (2260 cm-1). The urethane resulting product (MAPy) was collected after removing 
the solvent under vacuum as yellow powder. Yield 4.6 g (92 %). 

1H NMR (DMSO-d6,  ppm): 8.5-8 (m, 9H, aromatic); 7.5 (t, 1H, NH); 6.05(s, 1H, CH2=C in 
trans position relative to CH3 unit); 5.79 (s, 2H, NH-COO-CH2); 5.63 (s, 1H, CH2=C in cis position 
relative to CH3 unit); 4.12 (m, 2H, COO-CH2-CH2-NH); 3.36 (m, 2H, COO-CH2-CH2-NH); 1.84 (s, 
3H, CH2=C-CH3). FTIR (KBr, cm-1): 3301 (NH); 2854-2956 (C-H); 1718 (CO); 1687 (amide I); 
1636 and 817 (CH=C-); 1549 (amide II); 1274 and 1174 (C-O). 

 
2.4. Synthesis of the block copolymers 
In the preparation of block copolymers, PEO-Br was used as ATRP macroinitiator. Into a 

typical experiment, 2 g (0.93 mmol) macroinitiator, 0.133 g (0.93 mmol) CuBr and 0.45 mL 
(2.139 mmol) PMDETA (with molar ratios initiator:CuBr:PMDETA = 1:1:2.3) were dissolved in 
5 mL dioxane. The solution was deoxygenated by freeze-pump-thaw cycles, followed by the 
addition of 13 g (91.2 mmol) n-butyl methacrylate and 0.72 g (1.86 mmol) MAPy. The 
polymerization was performed into o flame-sealed glass ampoule at 80 oC, under argon for 48 h. 
After this time, the polymerization was terminated by exposure to air and dilution with THF. 
Polymerization solution was then purified on alumina columns to remove copper catalyst. The 
excess solvent was removed by rotary evaporation and the solid product was recovered after 
precipitation in methanol and drying in vacuum at 40 oC overnight. 

The second block copolymer (COP-B2) was similarly prepared, the initial molar ratio of 
the partners being of PEO-Br:CuBr:PMDETA:BMA:MAPy = 1:1:2.3:490:10. Applying the same 
purification method, COP-B2 block copolymer was obtained with a yield of 80.6 %. 

COP-B1: GPC: Mw = 16900, Mw/Mn = 1.12. FTIR (KBr, cm-1): 3432 (NH); 2874-2959 (C-
H); 1728 (CO); 1242 and 1147 (C-O). 

COP-B2: GPC: Mw = 65000, Mw/Mn = 1.29. 1H NMR (CDCl3,  ppm): 8.4-8 (m, 72H, 
aromatic); 5.86 (s, 4H, NH-COO-CH2); 3.94 (m, 790H, COO-CH2-CH2); 3.64 (m, 181H, O-CH2-
CH2-O); 3.38 (s, 3H, CH3-O-CH2- CH2); 2.1-1.3 (m, 2386H, COO-CH2-CH2-CH2-CH3 and -CH2-
C(CH3)-COO); 1.15-0.80 (m, 2394H, CH2-CH2-CH3 and -CH2-C(CH3)-COO). FTIR (KBr, cm-1): 
3432 (NH); 2875-2959 (C-H); 1728 (CO); 1242 and 1147 (C-O). 

 
2.5. Instrumentation and measurements 
 
The structures of the monomer, macroinitiator and block copolymers were verified by 1H 

NMR spectrometry and FTIR spectroscopy using a Bruker Avance DRX 400 spectrometer and a 
Bruker Vertex 70 FT-IR instrument, respectively. Gel permeation chromatography (GPC) 
measurements were carried out using an equipment supplied by Polymer Laboratories Ltd., at 
room temperature with a single PL-Mixed “D” column (bead size 5 µm; pore sizes = 100, 500, 
103, 104 Å). The mobile phase was THF (containing 2% triethylamine), delivered at a flow rate of 
1 mL min-1 using a Waters 515 isocratic pump. The refractive index was measured with an ERC-
7515A refractive index detector also supplied by Polymer Laboratories Ltd. The instrumentation 
was calibrated using low polydispersity poly(methyl methacrylate) (PMMA) standards supplied by 
Polymer Laboratories Ltd. The thermal stability of the PEO-Br and block copolymers was 
analyzed through thermogravimetry using a MOM Budapest derivatograph. TG and TGA curves 
were recorded between 20 and 600 C with a heating rate of 12 C·min-1 in air. The thermal 
transitions temperatures were determined using a differential scanning calorimeter (Pyris Diamond 
DSC, Perkin Elmer USA). For analysis, 10-15 mg of the samples were placed in an aluminium 
pan. They were scanned from -100 to +150 °C and subsequently cooled to -100 °C at a rate of 20 
°C min-1, kept for 5 min at -100 °C, and finally reheated to 150 °C with the same rate. The glass 
transition temperature (Tg) was evaluated as the midpoint temperature of the characteristic heat 
capacity change detected in the second heating traces. Polymer surface morphology was examined 
by atomic force microscopic (AFM) technique using a SOLVER PRO–M AFM. The polymeric 
films for AFM experiment were prepared using a spin coater Model WS-400B-6NPP/LITE/10K 
from Laurel Tech at 3000 rpm, the images being registered in different points of the sample to 
check their reproducibility. The fluorescence intensity measurements were done on a Perkin-Elmer 
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LS 55 spectrophotometer at room temperature in water, dimethylformamide, THF and chloroform 
(without corrections). The influence of various analytes (metal cations, iodide ions or 
nitromethane) on the fluorescence spectra of the block copolymers was examined by adding 
different volume of analyte stock to a known volume of the polymer solution (4 mL) and stirring 
to equilibrium. Excitation was carried at λex = 320 nm, whereas the emission spectra were recorded 
in the range of 330 - 600 nm. 

 
 
3. Results and discussion 
3.1 Design and characterization of the block copolymers 
For the preparation of poly(ethylene oxide)-b-poly(n-butyl methacrylate-co-2-

methacryloyloxyethylcarbamoyloxymethylpyrene) block copolymers (COP-B1 and COP-B2) by 
atom-transfer radical polymerization, the reaction of poly(ethylene glycol) methyl ether with 2-
bromoisobutyryl bromide was firstly performed in order to obtain the macroinitiator end-capped 
with bromine atom (PEO-Br) [27]. Furthermore, the synthesis of new fluorescent block 
copolymers assumed firstly the preparation of an appropriate pyrene derivative with methacrylic 
polymerizable moiety (MAPy), using a conventional addition reaction of 1-pyrene methanol to 2-
isocyanatoethylmethacrylate. The structure of the formed monomer 2-methacryloyloxyethyl-
carbamoyloxymethyl pyrene was confirmed by spectroscopic techniques, its 1H NMR spectrum 
being displayed in Figure 1. 
 

 
 

Fig. 1. Chemical structure and the 1H NMR spectrum of MAPy in DMSO-d6. 
 

For the synthesis of the block copolymers (outlined in Scheme 1), the PEO-Br 
macroinitiator was used together with a mixture of methacrylic monomers (n-butyl methacrylate 
and 2-methacryloyloxyethyl-carbamoyloxymethyl pyrene) in various molar ratios, adjusting the 
feed ratio of monomers to macroinitiator (the detailed polymerization conditions are listed in  
Table 1). 
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Scheme 1. Reaction scheme for the synthesis of block copolymers COP-B1 and COP-B2 
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3.2. Thermal properties and surface characteristics 
 
To assess the thermal properties for the block copolymers, thermogravimetric analysis 

(TGA) and differential scanning calorimetry (DSC) were carried out, the obtained results being 
included in Table 2.  
 

Table 2. Thermal properties of the macroinitiator and block copolymers 
 

Sample TI (
oC) Tf (

oC) T10% (oC) Tmax (
oC) 

Weight loss 
(%) 

Tg (
oC) 

PEO-Br 190 440 285 392 85.6 - 
COP-B1 240 455 295 380 88.8 37.2 
COP-B2 237 445 295 360 87.2 40.6 

 
 

As can be observed, the decomposition process of the macroinitiator begins around 190 oC 
and is with about 50 oC lower than the onset of thermal degradation measured for the block 
copolymers, remark that suggests an enhanced thermal stability in the case of the block 
copolymers, attributed to the presence of poly(n-butyl methacrylate). The thermal degradation of 
the investigated polymeric materials occurred into a single step, in which most of the polymer 
chains are decomposed as estimated from the amount of residue. Concerning the thermal 
characterization of the block copolymers by DSC, the results included in Table 2 show that longer 
block length of poly(n-butyl methacrylate) in COP-B2 resulted in higher glass transition 
temperature (Tg at about 40.6 oC) as compared with COP-B1 (Tg at 37.2 oC), while the Tg for 
poly(ethylene oxide) in PEO-Br macroinitiator could not be detected probably due to the high 
crystallinity of the sample [28]. 

The surface morphology and topographic features of the block copolymers in thin films 
were examined by atomic force microscopy (AFM).  

 

 
 

Fig. 3. 3D AFM images for polymeric films based on pyrene-containing block copolymers COP-B1 (a) and 
COP-B2 (b). 

 
 

Fig. 3 shows the 3D morphological images of the block copolymers in thin films obtained 
by spin coating, where no important differences between the surface morphology of the films can 
be visualized. Thus, the surfaces of both copolymers appeared homogeneous and almost flat with 
small arrangements of several nanometers in height and with a measured root-mean-square surface 
roughness value (Ra) of about 0.8 nm (COP-B1) and 4.1 nm respectively (COP-B2). The minor 
differences noticed in the surface morphology of the block copolymers are attributed principally to 
the small structural dissimilarities of these polymeric architectures, where the hydrophilic block 
has a length much smaller than the hydrophobic one, and the formation of nanostructured domains 
occurred in the same manner for both surfaces. 
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