
Digest Journal of Nanomaterials and Biostructures                Vol. 9, No. 2, April - June 2014, p. 503 - 509 
 

 
 

INFLUENCE OF PHOTO-INITIATOR CONCENTRATION ON THE VIABILITY 
OF CELLS ENCAPSULATED IN PHOTO-CROSSLINKED MICROGELS 

FABRICATED BY MICROFLUIDICS 
 
 
J. JUNG, J. OHa* 
Hemorheology Research Institute, Chonbuk National University, Jeonju 561-756, 
South Korea 
aDivision of Mechanical Design Engineering, Chonbuk National University, 
Jeonju 561-756, South Korea 

 
 
Photo-initiators have long been used as a simple and effective photo-polymerization tool 
for biomedical applications such as cell-embedded scaffolds. Nevertheless, the influence 
of photo-initiators on cytotoxicity has not yet been comprehensively studied. Thus, we 
investigated the viability of cells encapsulated in gelatin methacrylate (GelMa) microgels 
in the presence of different concentrations of photo-initiator. GelMa microdroplets 
(5wt%)containing different concentrations of photo-initiator (0.2, 0.5, 0.7, and 1.0 wt%) 
were generated using a flow-focusing microfluidic device. Cells grown in GelMa 
microgels containing 0.2 wt% photo-initiator had high viability, suggesting that the photo-
initiator was not cytotoxic at this concentration. However, at photo-initiator concentrations 
greater than 0.5 wt%, cell viability began to decrease; moreover, at 1.0 wt%, almost no 
live cells were observed. The decreased cell viability associated with increased 
concentrations of photo-initiator is probably a result of residues and byproducts from 
reactions with photo-initiators. This detailed study of the relationship between cell 
viability and photo-initiator concentration can inform the development of future photo-
crosslinking strategies used in cell-laden hydrogel applications. 
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1. Introduction 
 
Biomaterials used in biomedical applications, such as regenerative medicine and drug 

delivery, have often been designed to form gels by photo-initiated polymerization [1, 2]. The 
possible applications of photo-polymerized hydrogels include acting as a barrier to prevent tissue 
injury, providing a drug delivery system for in vitro targets, and forming a scaffold for cell growth 
and transplantation [3-5]. For example, a polyvinyl alcohol (PVA) hydrogel has been photo-
crosslinked and used in combination with a cell-adhesive peptide to support cell attachment and 
spreading [6]. A biodegradable scaffold based on photo-polymerizable poly(lactic acid)-g-PVA 
hydrogel has also been utilized to fabricate engineered heart valves [7]. In addition, photo-
polymerizable poly-(ethylene glycol) diacrylate (PEG-DA) has also been employed to immobilize 
or encapsulate various types of living cells in order to study multistep cellular behaviors [8-10]. 

Compared with conventional crosslinking methods, photo-crosslinking can enable simple, 
rapid, and effective production of biocompatible polymers. Photo-crosslinking has the following 
advantages [5, 11, 12]: first, polymerization of free radical chains is easily initiated by low 
intensity light irradiation; second, the process of gelation can be temporally and spatially 
controlled by altering the exposure conditions to light irradiation; third, rapid production of 
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biomaterial can be achieved by in situ gelation for only a short photo-polymerization time; and 
fourth, photo-initiated polymerization occurs at physiologically sustainable temperatures and pH 
ranges, allowing the polymerization to incorporate living cells and biological molecules without 
damaging them. 

Photo-polymerization can be easily driven by a variety of photo-initiators, which release 
free radicals upon exposure to specific light irradiations [12-14]. However, inactivated residues or 
byproducts of initiators after photo-polymerization may have cytotoxic effects on cells embedded 
in hydrogels, which would be a critical issue [1, 5, 12]. Therefore, it is very important to study 
whether the concentrationof a given photo-initiatoris correlated with cellular cytotoxicity.  

To address this issue, the viability of cells embedded in gelatin methacrylate (GelMa) 
microgels (a common photo-crosslinkable hydrogel) was investigated as a function of photo-
initiator concentration. Cell-encapsulated GelMa microdroplets were generated using a flow-
focusing microfluidic device. Then, these droplets were UV-crosslinked using 2-hydroxy-1-[4-
(hydroxyethoxy)phenyl]-2-methyl-1-propanone, a water-soluble photo-initiator widely used in a 
variety of cell types. 

 
2. Experimental  
 
2.1 Synthesis of gelatin methacrylate 
 
Photo-polymerizable GelMa was synthesized by reacting gelatin with methacrylamides, 

thus replacing the amine groups of gelatin with the methacrylic functional groups. In this study, 
gelatin (type A, bloom strength of 300; Sigma Aldrich, St. Louis, MO, USA) was isolated from 
porcine skin. While stirring at 50oC, gelatin (5 g) and 4-(dimethlyamino)-pyridine (0.5 g; Sigma 
Aldrich) were solubilized in dimethyl sulfoxide (Sigma Aldrich). Then, glycidyl methacrylate (2 
mL; Sigma Aldrich) was added to the mixture at a constant rate of 0.5 mL/min. After allowing the 
reaction to proceed for two days in a dry N2 gas atmosphere, the reaction products were purified 
using dialysis membranes (molecular weight cut off 12,000–14,000 Da; Sigma Aldrich) with 
deionized water for one week, at a constant temperature of 40 oC. Finally, after freeze-drying the 
purified solution, a white solid consisting of GelMa was obtained. 

 
2.2 Flow-focusing microfluidic device 
 
Using standard photolithography, an SU-8 master mold was prepared by etching a preset 

design of microchannels onto a silicon wafer. The silicone elastomer base and the curing agent 
(Sylgard184 silicone elastomer kit; Dow Corning, Midland, MI, USA) were mixed at a ratio of 10 
to 1. The mixture was poured onto the SU-8 master mold, and then cured at 100°C for one hour. 
After separating the polydimethylsiloxane (PDMS) part from the SU-8 master mold, holes were 
perforated in the mold to create inlets and outlets. The flow-focusing microfluidic device was then 
prepared by permanently bonding the PDMS component with a glass slide under plasma treatment 
(Harrick Plasma, Ithaca, NY, USA). 

 
2.3 Generation of GelMa microdroplets 
 
Fig. 1a shows a schematic feature of the microfluidic device that was used to generate 

microdroplets. The freeze-dried GelMa macromer was dissolved in phosphate-buffered saline (pH 
7.4) at 60°Cto prepare a 5 wt% GelMa prepolymer solution. Mineral oil was then prepared by 
adding a 20 wt% emulsifier (Span 80, Sigma Aldrich). To characterize the effects of photo-initiator 
concentration on cell viability during the photo-polymerization process upon UV exposure, 
different concentrations (0.2, 0.5, 0.7, and 1.0 wt%) of the photo-initiator (2-hydroxy-1-[4-
(hydroxyethoxy)phenyl]-2-methyl-1-propanone; Irgacure 2959; Ciba Specialty Chemicals, Basel, 
Switzerland) were added into the GelMa prepolymer solution. 
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2.4 Crosslinking of GelMa microdroplets 
 
The photo-polymerization of GelMa microdroplets was conducted using UV light 

treatment. The schematic polymerization process is outlined in Fig. 1b. Aqueous GelMa 
microdroplets, generated with Tygon tubing (inner diameter = 0.3 mm; thickness = 0.25 mm) were 
exposed to UV irradiation for 5 min, and cured at an intensity of 0.85 W/cm2, using a UV lamp 
(OmniCure S2000; Lumen Dynamics, ON, Canada). The resultant crosslinked GelMa microgels 
were collected, harvested by centrifugation, and rinsed with phosphate-buffered saline (PBS). 

 
2.5 Cell encapsulation and viability test 
 
NIH-3T3 cells (mouse embryonic fibroblasts) were cultured in Dulbecco’s modified 

Eagle’s medium (DMEM) (Invitrogen, Carlsbad, CA, USA) supplemented with 1 % penicillin-
streptomycin (Invitrogen) and 10 % fetal bovine serum (Invitrogen). Cell incubation was 
performed in a humidified 5 % CO2 environment at 37 °C. Cells were passaged every three days, 
and medium was changed every 24 h. Prepared NIH-3T3 cells (107 cells per mL) were then 
premixed with 5 % GelMa prepolymer solutions.  

Fabricated cell-laden microdroplets were photo-crosslinked, and the viability of NIH-3T3 
cells was investigated one day later using a Live⁄Dead® Viability Cytotoxicity Kit (Invitrogen). 
This kit employs calcein-AM (0.5 μL/mL; green stain for live cells) and the ethidium homodimer-
1 (2 μL/mL; red stain for dead cells) to allow visualization of live and dead cells. Cells were 
stained in the GelMa microgels for 15 min at 37 °C. After rinsing with PBS, cell viability was 
observed using a fluorescence microscope. The numbers of live and dead cells were counted for 
ten different microgels at each concentration of photo-initiator. Measured results are expressed as 
means and standard deviations. Statistical analysis was performed using the ANOVA test, with 
photo-initiator concentration set as a main effect and cell viability set as the dependent variable. 

 
3. Results and discussion 
 
Upon introduction of the two immiscible fluids into the microfluidic device, GelMa 

microdropletswere rapidly generated in the flow-focusing channel. In a flow-focusing microfluidic 
system, shear stress between the two phases could play an important role in the physical 
deformation of the dispersed phase into microdroplets. Different outcomes were observed in the 
flow-focusing microfluidic system, depending on whether cells were present in the dispersed 
phase. At GelMa prepolymer solution flow rates less than 200 μL/h, microdroplets were uniformly 
generated, regardless of the presence of cells. However, increasing the flow rate of GelMa 
prepolymer solution greater than 200 μL/h caused cell-laden microdroplets to be generated in an 
unstable manner, as shown in Fig. 2. This instability was exacerbated by the increased viscosity of 
the dispersed phase upon the addition of cells, which resulted in an unstable jetting length of 
GelMa prepolymer solution and non-uniform microdroplets.   

 UV irradiation initiated the process of radical chain polymerization by photo-initiators in 
the microgels. The total amount of energy to which the microgels were exposed during the 
experimentwas25.5 J/cm2, which was the minimum amount able to maintain the spherical shape of 
5 wt% GelMa microdroplets. A 0.2 wt% concentration of photo-initiator, incorporated with the 
applied UV irradiation energy, was chosen as the minimum threshold in this study. When the 
concentration of photo-initiator was less than 0.2 wt%, only weak crosslinking networks were 
formed; consequently, microgels ruptured during swelling. 
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