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In our previous work, the lanthanum iron garnet-filled PVDF-polymer nanocomposite has 
been prepared. The real and imaginary parts of relative permittivity and permeability of 
mentioned sample were obtained simultaneously using the Nicholson-Ross-Weir (NRW) 
method based on the measurement of the reflection and transmission coefficients of the 
materials. In this study, the electric field distribution and attenuation at rectangular 
waveguide loaded sample were investigated based on the Finite Element Method (FEM). 
The computations of the reflection and transmission coefficients (S-parameters) were 
implemented using both the FEM and NRW methods. The results were compared with the 
measured reflection and transmission coefficients using the rectangular waveguide in 
conjunction with an Agilent N5230A PNA-L Vector network analyzer (VNA) at X-band 
frequencies (8 GHz- 12 GHz). The results of the relative error indicated that, among the 
two applied methods, the FEM is more accurate than the NRW method. 
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1. Introduction 
 
The application of nanocomposites in microwave and electronic devices requires the exact 

knowledge of all parameters of a single wave carrier signal. Determination of reflection and 
transmission coefficients (S-Parameters)of garnet ferrites loaded polymer nanocomposites have 
attracted the interest of many researchers and scientists due to their applications in microwave and 
electronic devices such as isolators, filters and circulators [1-3].  

As a soft ferrite material, lanthanum iron garnet (La3Fe5O12) has been used in various 
applications in electronic devices. This is because of its efficient absorption of electromagnetic 
waves, low saturation flux density, low losses at high frequencies, high resistivity and easy to 
magnetize and demagnetize. As a result, polymer-based composites filled with ferrite particles, 
such as cobalt-ferrite [4], NiZn-ferrite [5], and MnZn-ferrite [6, 7] have attracted considerable 
attention over the years. 

The parameters of a single wave carrier signal such as frequency, phase, and amplitude 
and DC component were determined by a general method based on four different samples [8].the 
relative error of the estimated parameters was decreasing linearly as the signal-to-noise ratio 
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(SNR) increases. For portable DSP, a simple and precise instantaneous frequency estimation 
method of single sinusoid signals were conducted based on instrumentation to obtain an analytical 
formula [9]. A quantized multiple sinusoids signal estimation algorithm was presented [10]. The 
accuracy of the initial values of iterations has a large influence on the speed of convergence. An 
iterative process was performed in order to reduce the cost function. 

Many methods have been used for measuring reflection and transmission coefficients as 
electromagnetic properties of the materials [11,12]. In our previous work [13, 14], the transmission 
reflection rectangular waveguide technique (T/R) was conducted in order to obtain the reflection 
and transmission coefficients of the materials [15].  

Moreover, in our previous studies, the Nicholson-Ross-Weir (NRW) method was applied 
to calculate simultaneously the complex permittivity and permeability of the lanthanum iron 
garnet-filled PVDF-polymer as nanocomposite sample [13]. The calculations were based on 
measured reflection and transmission coefficients of mentioned sample which positioned in 
rectangular waveguide at X-band frequencies. Inanition, The NRW method was introduced in 
order to calculate the reflection and transmission coefficients of the mentioned sample by applying 
obtained complex permittivity and permeability as well as [13, 15]. The comparisons of the results 
obtained by rectangular waveguide in conjunction with an Agilent N5230A PNA-L Vector 
network analyzer (VNA) and NRW method were presented to show the validation of obtained 
complex permittivity and permeability of sample [13]. 

Here, COMSOL software [16, 17] was used based on the Finite Element Method (FEM) to 
simulate the rectangular waveguide with three dimension of the geometry. The model consists of a 
rectangular waveguide with microwave propagation transition through it. This model applies the 
RF Module’s Port boundary condition for the wave propagation problem. with this boundary 
condition, the software determines the distribution of the electric field intensity based on FEM 
[18], The attenuation of the PVDF-13%LIG was calculated in decibel (dB) based on the maximum 
intensity of electric field in rectangular waveguide where the wave enters and exits from it. The 
computations of the reflection and transmission coefficients were implemented using both the 
FEM and Nicholson-Ross-Weir (NRW) methods. The results were compared with the measured 
the reflection and transmission coefficient using the rectangular waveguide at X-band frequencies 
(8 GHz- 12 GHz). The Network analyzer was calibrated by implementing a standard full two-port 
calibration technique (SOLT). 

 
2. Methodology 
 
2.1 Finite Element Method 
 
In this study, FEM was used in order to determine the reflection and transmission 

coefficients (S-Parameters) of PVDF-13%LIG which was loaded in rectangular waveguide as 
shown in Figure 1. It was assumed that the rectangular waveguide was excited by a dominant ܶܧଵ 
mode from the left and the reflection and transmission coefficient were measured at the reference 
plane ݏଵ  andݏଶ, respectively. For the purpose of analysis, the rectangular waveguide are divided 
into three regions: Region I (z < 0) and Region II (0 	z	 d) and Region III (z > 0). While the 
first and third regions (I and III) were covered by air the nanocomposite sample located in the 
second region (II).  

 

 
Fig. 1. Rectangular Waveguide Loaded with PVDF-13%LIG Sample 
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In the FEM formulation, the electric field in the rectangular waveguide was discretized 
using tetrahedron elements [19, 20]. Hence, within each tetrahedron, the unknown field can be 
interpolated from each node value by using the first order polynomial [21] as follows: 
 

,ݔ)ߩ                                                 ,ݕ                              (1)                                         ݖ݀+ݕ	ܿ+ݔ+ܾܽ	=(ݖ
 
The electric field in the rectangular waveguide is   
   

                                                 Eୣ= ∑ N୧
ୣ

୧ୀଵ E୧
ୣሺx, y, zሻ                                       (2)  

                                         
where		 ୧ܰ

ୣ, ݅= 1, 2, 3...6 are the six complex amplitudes of electric field associated with the six 
edges of the tetrahedron, and  ۳୧

ୣ	ሺx, y, zሻ	is the vector basis function associated with the ݅th edge of 
the tetrahedron. Substituting equation (1) with equation (2) and using the boundary condition and 
the integration over the volume of one Tetrahedron is now: 
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After the simplification, the matrix form of equation (3) can be written as follows: 
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where the elements of matrices are given by: 
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These element matrices can be assembled over all the tetrahedron elements in the sample 

region to obtain a global matrix equation   
                           

                                         ሾSሿ ൈ ሼN୧ሽ ൌ ሼvሽ                                                     (7)                         
 

The solution vectorሼN୧ሽ  of matrix equation (7) is then used to determine the reflection and 
transmission coefficients at the reference plane Sଵ and S	ଶ [22]. 
 

                                          ܴ ൌ ௌభ	ሬԦ|௩ܧ∬ 	ൈ ݁ሬሬሬԦ	݀ݏ െ1                                                  (8)                             

                                          ܶ ൌ ௌమ	ሬԦ|௩ܧ∬ 	ൈ ݁ሬሬሬԦ	݀(9)                                                        ݏ      
                   

The reflection and transmission coefficient of the wave defined in above (equations 8 and 
9) are used in the COMSOL software. 

 
2.2 Sample Preparation  
 LIG was prepared according to the previous our work [23]. Amorphous LIG was 

synthesized by sol-gel method. The pure phase crystalline cubic LIG was obtained by the heat-
treatment of the as-prepared amorphous material at 700 ˚C for 2h in air atmosphere. PVDF-
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3.4 Reflection and Transmission Coefficient 
 
Fig. 4(a, b) shows the comparisons between the FEM simulation, NRW Method results 

and measured data for variation in the reflection and transmission coefficients of  PVDF-13%LIG 
with frequency where placed  in the rectangular waveguide. As shown in mentioned Figure, the X-
axis represents the frequencies from 8 to 12 GHz and the Y-axis indicates a tolerance from zero to 
one. General observation indicates that the level of transmission is greater than reflection. The sum 
of reflection and transmission coefficients values is always around unity. Hence, the increase in 
reflection coefficient causes the decrease of transmission coefficient and vice versa.  

As can be seen in mentioned figure, the measured, calculated (NRW) and simulated 
(FEM) values for reflection coefficients start at 0.54, 0.38 and 0.64 respectively from the Y axis. 
From this point, the trend of the measured and simulated curves of reflection coefficient 
demonstrates a decreasing to 0.52 and 0.53 when the frequency reaches to the 12 GHz, 
Meanwhile, the calculated curve of reflection coefficient demonstrates an increasing trend up to 
0.42 when the frequency reaches 12 GHz. In contrast, from the Y axis, the measured, calculated 
(NRW) and simulated (FEM) values in transmission coefficient start at 0.70, 0.87 and 0.64 
respectively. From this point, the trend of the measured and simulated curves almost remains 
constant to the final frequency of 12 GHz. Meanwhile, the calculated curve of transmission 
coefficient demonstrates a decrease to 0.76 when the frequency reaches 12 GHz in the X axis. 
 
 

 
 

 
 
 
 

Fig.4. Measured, calculated and simulated magnitude of a) transmission and (b) reflection  
coefficient of a 3 mm thick of PVDF-13%LIG at X-band Frequencies 
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The accuracy of FEM simulation and calculated (NRW) of reflection and transmission 
coefficients can be determined by calculating the relative error with respect to the measurement 
data. The mean relative error values of FEM simulation of reflection and transmission coefficients 
observed to 0.0596 and 0.0972, respectively meanwhile The mean relative error values of 
calculated (NRW) of the reflection and transmission coefficients observed to be 0.2417 and 
0.1110, respectively. Consequently, the results indicate that the obtained results by FEM method 
are more accurate than NRW method where PVDF-13%LIG is examined. Hence, The FEM is 
highly suggested in order to obtain electromagnetic properties of nanocomposites. 

 
4. Conclusions  
 
In this work, the Finite Element Method (FEM) procedure has been presented to determine 

the distribution of electric field intensity of the 3 mm thick of PVDF-13%LIG as nanocomposite 
sample which was placed in rectangular waveguide. The results indicated that the attenuation of 
mentioned nanocomposite sample at 12 GHz frequency revealed to 9.30 dB. Furthermore, the 
magnitudes of the reflection and transmission coefficients of the PVDF-13%LIG were obtained 
successfully by FEM, NRW and experimental method as well. General observations on curves 
indicate that the level of transmission is greater than reflection. In addition, it can be deduced that 
the reflection and transmission coefficients obtained by FEM are more accurate than achievements 
results by NRW method due to the values of mean relative error. 
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