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Robust Cu-doped PbS (Lead Sulphide) thin films have been prepared using a dc sputtering 

technique. The PbS thin film deposition was characterized the crystal structure using XRD 

technique and also morphological surface using SEM-EDX. From the XRD measurement, 

Bragg peaks found are attributed to diffraction planes of the related material. The doping 

method was done by providing Cu plate directly on the plate surface of PbS target. This 

was also prepared for Fe-doped PbS thin film. The electrical property of Cu- and Fe-doped 

PbS thin films has been characterized using a Four-Point Probe technique. The resistivity 

was found to decrease rapidly from 189.4 cm (un-doped) to 2.79 cm (doped) for Cu, 

and decrease to 6.47 cm for Fe (doped), respectively. The doping method is considerably 

novel. Texture Coefficient for (111) and (200) directions has also been calculated to 

support the correlation between diamater of Cu dopant plate and Cu concentration in PbS 

thin films.  
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1. Introduction 
 

Lead Sulphide (PbS) is an IV-VI group semiconductor material with a direct and narrow 

bandgap of about 0.41 eV at room temperature has been studied widely due to its potential 

applications in various devices [1]. PbS material is a well-known material that plays an important 

role in optoelectronic device fabrications. This semiconductor material shows appropriate 

performance to absorb short wavelength infrared light spectrum. Use of PbS thin films as an IR 

sensor device is of interest for environment surveillance and military use. PbS has a high 

absorbance in NIR spectrum and has a great potential for IR photodetectors. This material is also 

extensively studied for solar cell devices because of its suitability in optical properties for that 

device design. PbS material has a cubic crystal structure with an absorption range in 1 – 3 m [2]. 

Various techniques have been used to deposit PbS thin film such of Chemical Bath 

Deposition (CBD) that is considerably less expensive, easy to handle and possible for large area 

deposition [3-5]. By using this technique PbS films were also doped using some metal dopants to 

exploit any changes of electrical properties of film materials. Dopant introduced to PbS thin film 

deposition is aimed to improve its electrical conductivity or resistivity. The increase of 

conductivity will be encouraging of the sensor device such of PbS material used for infrared 

sensors. Various metals doping has been introduced to PbS thin film such of Cu using CBD 

technique for electrical properties studies [6], also for investigation of material nanostructure [7]. 

In another work, PbS films have been doped using Zn [8] that was claimed for the first time 

prepared using CBD technique. They study photoluminescence properties from the thin film 
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deposition. Another work was reported for Sr-doped PbS film by investigating the effect of doping 

concentration to the structural, morphological and optical properties of the material [9]. The above 

investigation was also carried out by using SILAR method for Ba-doped PbS thin film [10]. The 

results show that those properties directly depend on the Ba doping ratio. 

For the purpose of phyical properties improvement, Cu-doped PbS thin films have been 

explored by using various deposition techniques. By using a common CBD technique, several 

research works have been reported [6-8], and using a sputtering technique that material was also 

succesfully deposited [13]. In the electrical property characterization, previous interesting work on 

Cu-doped PbS thin film has been reported by Zheng et al, 2016 [6]. From work, their results show 

that low resistivity has been achieved of the film by introducing various Cu concentrations. The 

resistivity was observed to decrease followed by the increase of doping concentration until 

achieving minimum value and then increase again. By using the same technique, Taouti et al, 2016 

[13] were also reported the similar low resistivity. The trend of graph between resistivity and 

doping concentration is also observed. They studied further to the texture coefficient caused by 

thin film growth during the deposition. This texture coefficient seems interesting as we can see any 

strong correlation between the trend of the texture coefficient and the concentration of Cu 

introduced to the PbS films. 

Another deposition technique of sputtering is also possible to prepare Cu-doped PbS thin 

film. Now days, by using this technique, there is very limited number of research works published 

particularly for this material. The sputtering technique offers a robust deposition beside any 

advantages of the quality of deposition process as this technique is run under vacuum chamber. 

Work has been reported using PbS material such of preparation of PbS nanocrystal-doped SiO2 

thin film [11]. They studied the structure properties of the material using XPS (X-Ray 

Photoelectron Spectroscopy) encompassing the Pb-S and Pb-O bonding under sputtering effect. 

Meanwhile, Bi-doped PbS quantum dot has been prepared to enhance robust photovoltaic devices 

based on an homojunction device to find power conversion efficiency [12].  

In the present study, a thin film of PbS material used for a dc sputtering technique by 

introducing Cu-and Fe-doped PbS thin films is considerably novel and challenging. Use of 

sputtering technique in the vacuum chamber may introduce more purity of elements involved in 

the deposition process, also robust and short deposition time. Meanwhile, for doping technique, 

the doping material was put directly on the center of target material of PbS on the stage in the 

vacuum chamber. In our best knowledge, no research work reported previously in the preparation 

of metal doped PbS thin film using a sputtering technique. This new method to introduce doping 

leads any study of optimum resistivity of doping concentration. The correlation between the 

diameter of Cu and texture coefficient will be reported. 

 

 

2. Material and measurement technique 
 

2.1 Material Preparation 

PbS sputter material target (99.9 % purity) has been ordered from QS Rare Element (New 

York, US) for 2” diameter and 0.125” thickness. The material was used directly prior the 

experiment. For the sputtering machine operation, the chamber was pumped using a rotary pump, 

later on, proceeded with diffusion pump until the pressure achieved in order of 10
-5

 Torr. During 

the sputtering proces to introduce glow discharge, an argon gas was flown into the chamber. In this 

condition, the vacuum pressure was of 10
-2

 Torr. For the initial investigation of the properties of 

PbS layer deposition, the substrate of microscope slide glass was used. Prior to the deposition, the 

microscope glass was used as a substrate and cleaned using alcohol under an ultrasonic cleaner. 

The area of substrate was 1.0 x 2.5 cm
2
. Stage of the target (cathode) was adjusted on the bottom 

in the chamber. This adjustment is aimed to minimize any contaminants deposit on the PbS film 

during the process. 

The deposition was set at a deposition time of 30 minutes. In this experiment, the voltage 

applied was set at 1 kV and current of 10 mA, meanwhile the distance between target and substrate 

was 3.0 cm. This distance is assumed to be optimal for sputtering process done. Longer distance 
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has been introduced for this set up that could reduce the strength of deposition, while shorter 

distance could experience the implanting mechanism to the film material.  

 

2.2 Doping Process 

Doping was carried out using Cu material. This was done by introducing Cu plate 

(GoodFellow, 99.99 % purity, 0.5 mm thickness) directly on the surface of PbS target in the 

vacuum chamber. In the experiment, the diameter of Cu used was of 2.5, 5.0, 10.0, and 15.0 mm, 

respectively. Meanwhile, for Fe material (GoodFellow, 99.99% purity, 1.0 mm thickness), the 

diameter was 30.0 mm. For the doping mechanism, Cu plate was put in the center of the target to 

allow the optimum area during the sputtering process. Bigger diameter of the plate is assumed to 

provide higher doping concentration in the PbS thin film. 

 

 

3. Thin film deposition Characterizations 
 

3.1 X-ray Diffraction 

The sample was characterized using XRD (RIGAKU Miniflex600) with CuK radiation 

source ( = 1.54 Å) operated at room temperature. The samples were run by employing the 

incident angles (2) from 2.0 to 80.0 (angle resolution of 0.02). 

 

3.2 SEM EDX 

PbS thin film was characterized using SEM EDX (JED-2300, JEOL) to study surface 

morphology. From the observation many information regarding crystal grain size, boundary, and 

thin film homogeneity will be obtained. Meanwhile, EDX (Energy Dispersive X-ray) spectra were 

used to analyze the compositional of PbS films. 

 

3.3 Four Point Probe 

A Four Point Probe technique (VECCO, FPP 5000) was also used to investigate the 

electrical resistivity of the samples. The measurement was run for doped and un-doped PbS thin 

films to be studied their effects on resistivity due to the doping material. The layer thickness was 

also obtained from the calculation and found from the measurement. 

 

 

4. Results and discussion 
 

4.1 Structure of PbS thin film 

PbS thin film deposition (for a deposition time of 30 minutes) has been characterized its 

structure using XRD. From the measurement XRD pattern obtained is shown in Fig. 1. Bragg 

peaks occur at angles (2) have been confirmed by comparing with X-ray diffraction powder 

database (JCPDS-ICDD, Card No 05-0592). From the comparison, it was concluded that Bragg 

angles approach to the database mentioned above at several angles given in Table 1. Narrow and 

sharp peaks indicate that PbS film deposited on a glass substrate is well crystallized. PbS has a 

cubic crystalline structure with a lattice constant of 5.936 Å. By referring to the cubic structure, the 

calculation could be done to determine diffraction plane and d-spacing, d follows the formula 

below [14]: 

   
222 lkh

a
d



                           (1) 

 

where, a is lattice constant of PbS (in Å ); h, k, and l are Miller indices, respectively. 

As PbS thin film was deposited on the substrate of glass, some Bragg peaks observed 

associated with this material (SiO2) was done by referring to JCPDS-ICDD, Card No 45-0130. The 

crystalline plane was determined by using a calculation based on the above equation as tabulated 

in Table 1. 
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Fig 1. XRD pattern obtained from the measurement for PbS thin film deposition. 

 

 

Table 1. List of peaks found from the experiment and calculated values. 

 

No. 2-theta(deg) 

observed 

d spacing (Å) 

observed 

Intensities 

observed 

(cps) 

h k l 

calculated  

d spacing (Å) 

calculated 

1 25.184(4) 3.53 17766(385) 1 1 1 3.43 

2 29.226(18) 3.05 718(77) 2 0 0 2.97 

3 37.93(2) 2.37 347(54) 4 0 2 (SiO2)  

4 42.290(3) 2.13 41666(589) 2 2 0 2.10 

5 50.19(6) 1.81 131(33) 3 1 1 1.79 

6 52.687(11) 1.73 2712(150) 2 2 2 1.71 

7 68.16(3) 1.37 932(88) 3 3 1 1.36 

8 70.23(4) 1.34 363(55) 4 2 5 (SiO2)  

9 78.27(7) 1.22 217(42) 6 4 3 (SiO2)  

  

 

By referring to the Bragg peaks indexing, crystalline grain size of PbS molecule, D could 

be calculated using the formula of Scherrer [15]: 

 





cos

K
D                                          (2) 

 

Where, K is a constant (=  0.94),  is wavelength of X-ray radiation (CuK = 0.154 nm),   is 

Bragg angle (= 25.18), and   is FWHM (Full Width at Half Maximum) of Bragg peak 

corresponds to plane of (111) = 0.260. From the calculation, D is found to be 35.26 nm. The size 

of crystal grain and its boundary may show the magnitude of conductivity or resistivity of thin film 

material. From SEM micrograph as shown in Fig. 2 for 20.000 times magnification, the surface 

morphology of PbS thin film (deposited for 30 minutes) is smooth, homogenous with very well-

defined grain boundaries. The grain spread over the surface of substrate owing to the grain size in 

tens of nanometer that close to the calculation found of 35 nm. The result shows very sharp Bragg 

peaks observed as indicated by a narrow FWHM. This result also approaches the size reported by 

Palomino-Merino et al, 2014 [7] for a grain size of 37 nm as they prepared using a CBD technique.  

Meanwhile, from EDX result for PbS thin film (as shown in Fig. 3), the percentages of 

atoms of Pb and S obtained are 57.10% and 42.90%, respectively. These results support the 

evidence that the thin film deposition consists of PbS material. As the sputtering technique is run 

under high vacuum chamber, it is found that no contaminant materials exist in the material 

composition. This environment is an advantage for thin film technology that requires high purity 

of material used. 
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Fig 2. SEM Image of PbS thin film deposition. 

 

 

 
 

Fig 3. EDX spectrum of PbS thin film. 

 

 

A comparison was made of the different structures of undoped PbS film, Cu-doped PbS 

film and Fe-doped PbS film, respectively. XRD measurement was carried out to these materials 

and the results are given in  Fig. 4 by suppressing some curves allowing to see more clear different 

peaks position. From that figure, Bragg peak appears at angles of 26.58 is attributed to CuS (100) 

crystal. This angle is also observed for Cu-doped PbS prepared using CBD [13]. For Fe-doped PbS 

thin film, Bragg peak observed at angle of 30.59 is attributed to FeS (004) from dopant material 

(JCPDS-ICDD, Card No 24-0080). By referring to the XRD pattern, Cu-doped PbS thin film is 

found to be sharp and narrow spectra compare than that of the Fe-doped PbS thin film observed. 

This phenomenon shows that the atomic arrangement of Cu dopant in PbS molecules has a better 

crystallinity. 

 

 
 

Fig. 4. XRD patterns for Cu- and Fe-doped PbS thin films. 
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XRD measurement was also run for various diameters of Cu dopant plate into PbS thin 

film as the results are shown in Fig. 5. From the figure, the increase of doping concentration 

(diameter of the dopant plate) will change the Bragg peaks intensities. The change shows a 

variation among the Bragg peaks that is due to the degree of crystallinity respects to the diffraction 

plane. By investigating diffraction plane (111) and (200) for all materials as given in Fig. 6, the 

variation of diffraction planes depend on the growth orientation during the deposition that will be 

explained later. 

 

 
 

Fig. 5. XRD patterns for various doping concentrations (various diameters of Cu plate) 

 introduced to PbS thin films. 

 

 

 
 

Fig. 6. XRD patterns for various doping concentrations (various diameters of Cu plate)  

at selected angles of (111) and (200) planes. 

 

 

Electrical sheet resistivity was also measured using a Four Point Probe technique. By 

introducing Cu plate on the target material for various diameters of 2.5 to 20.0 mm the resistivity 

was observed to decrease until achieving the minimum value (at a diameter of 5.0 mm), then 

increase again (Fig. 7). Nevertheless, the resistivity of Cu-doped PbS decreases drastically from 

189.4 cm (un-doped) to 2.79 cm. The values obtained are uniform over the surface of samples. 

This phenomenon exhibits the doping method was done in the good process. The rapid decrease of 

resistivity above shows the comparable result obtained by using a CBD technique [6]. From their 

work, resistivity decreases by the increase of doping concentration up to 6.4 %, later on the values 

increase again. This trend is similar as we observed using a different technique of sputtering. Cu-

doped PbS thin film we prepared is p-type due to the Pb ion vacancies. The increase of resistivity 

(increase the doping) after achieving the minimum value is assumed by the increase of scattering 

among the ions.  

As the film deposited for the increase of diameter of Cu plate (Fig. 7), the film deposition 

thickness was measured (using a Four Point Probe) to increase initially after doping introduced to 
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PbS until achieving the maximum thickness at a diameter of 5 mm followed by the decrease of its 

thickness. This phenomenon may show that the grain size is bigger at the smaller diameter and 

then decrease by the increasing of the plate’s diameter. Bigger grain size may affect to the 

decrease of the resistivity. All the samples were prepared at the same deposition time of 30 

minutes and also the same environment. This mechanism allows the sputtering particles yield the 

same amount during the deposition. By varying the diamater of Cu dopant plate on the PbS plate 

target, the ion Cu doped in the PbS will occur proportionaly. The weight of the material (PbS and 

Cu) after sputtering process will reduce because the volume of plate used (Cu and PbS) will reduce 

during the sputtering process and deposited over the area of the substrate’s surface and also on the 

wall of vacuum chamber. Cu-doped PbS thin film prepared using a sputtering technique may 

introduce any advantages such of robust deposition that will become a critical requirement for the 

devices products. This technique also offers fewer contaminants during the process, and less time 

consuming for a deposition that needs about 10 – 30 minutes. This property seems different with 

other technique such of CBD that needs longer time for deposition and less robust for the film 

deposition. The same experiment using a sputtering technique was also run for Fe-doped PbS thin 

film, the results are given in Fig. 8. From that figure, it is observed that the increase of diameter of 

dopant plate will be followed by the decrease of resistivity until achieving the minimum value and 

then increase again. 

 

 
Fig 7. The relationship between the resistivity, film thickness and the diameter of  

Cu plate of Cu-doped PbS film deposition. 

 

 

 
Fig 8. The relationship between, resistivity, film thickness and diameter of  

Fe plate for Fe-doped PbS thin film. 
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Texture Coefficient, TC as mentioned previously could be used to study the degree of 

preferred growth orientation of thin film through the following equation [13]: 

 

 𝑇𝐶 =
𝐼(ℎ𝑘𝑙)/𝐼𝑜(ℎ𝑘𝑙)
1

𝑁
∑ (

𝐼(ℎ𝑘𝑙)

𝐼𝑜(ℎ𝑘𝑙)
)𝑁

                                            (3) 

 

Calculation of TC for (111) direction shows that the increase of doping plate diamater 

followed by the decrease of TC until achieving the minimum value and then increase again. This 

trend is assumed to be similar to what Touati et al, 2016 [13] reported the increase of Cu doping 

concentration and TC. Also, there is a similar trend of this curve for the relationship between 

doping concentration and resistivity they reported. In our measurement, from Fig. 9, the growth 

orientation of Cu-doped PbS thin film achieves the preferential orientation for (111) and (200) 

peaks after a concentration corresponds to the diameter of doping plate of 10 mm and higher.  

Both orientations show the increase of TC indicates that the thin film crystal structure prepared 

using a sputtering technique improve its quality. This phenomenon is considered to be superior to 

this technique as the increase of doping concentration of Cu introduced to the PbS film does not 

alter the crystal plane orientation too much. The robust property of thin film deposition may cause 

the structure can maintain the growth orientation that may be experienced by using other 

techniques. 

 

 
 

Fig. 9. Texture Coefficient (TC) for (111) and (200) directions in Cu-doped PbS thin films. 

 

 

5. Conclusion 
 

Cu- and Fe-doped PbS thin films have been successfully prepared using a dc sputtering 

technique. The new method of doping by introducing Cu and Fe plates directly on the sputtering 

target on the stage leads the interesting technique. Bragg peaks observed from the experiment 

support the evidence of the crystalline structure of PbS. Additional peaks of SiO2 substrate were 

also determined. A significant decrease of resistivity was obtained to be 2.79 cm when Cu-doped 

PbS introduced from undoped PbS of 189.4 cm. This rapid decrease is comparable to what 

previously work observed using the same material but using a different technique of CBD.  For Fe-

doped PbS thin film, the lowest resistivity was found to be 6.47 cm. Texture Coefficient (TC) 

calculated from Cu-doped PbS thin films shows a similar trend between doping concentration and 

resistivity that was considered to correlate with the diameter of doping plate used. The sputtering 

technique used by introducing doping method using metals of Cu and Fe to find a significant 

decrease of resistivity and robust films are encouraging. 
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