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Operation of atomic force microscope in dynamic mode has received great attention due to 
its ability to image compliant materials and also due to the fact that it can prevent the tip 
and sample damages during scanning. In this paper a model is proposed for AFM micro-
cantilever-tip system based on Euler-Bernoulli beam theory and is solved numerically in 
order to study the behavior of a continuous cantilever beam in dynamic mode subject to 
changes in tip mass, cantilever density, length and the interaction force between the 
cantilever-tip and the sample. This is accomplished by linearizing the surface coupling 
force. 
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1. Introduction 
 
Atomic force microscope (AFM) is a powerful tool for imaging, manipulation and 

lithography in nanometer. After its invention in 1986 by Binning et al. [1] several improvements 
have been made [2]. In particular, AFM has been utilized in dynamic mode for imaging and 
manipulation [3]. The atomic force microscope utilizes a sharp tip which moves over the surface 
of the sample in a raster scan mode to measure the topography and material properties of the 
surface. The tip is located at the free end of a cantilever micro beam (probe) which may bend in 
response to the interaction forces between the tip and the sample. An estimate of the micro beam 
stiffness may be used to determine the interaction forces from measurements of these deflections.  

To understand properties and characteristics of this mode of operation, complete dynamic 
analysis of atomic force microscope is necessary [3-7]. Modeling of micro-cantilever-tip system 
and the interaction between tip and sample play an important role in the study of AFM dynamic 
operation. The dynamic response of the AFM cantilever has been investigated by many 
researchers. There are two different modeling approaches for AFM cantilever-tip system and its 
dynamics [8]. Lumped parameter modeling [9-12] and distributed parameter modeling [13-19]. In 
lumped parameter modeling, cantilever is approximated by a single degree of freedom harmonic 
oscillator is called first mode approximation [10-12]. Using this approximation, the equation of 
AFM cantilever motion is solved by ordinary differential equations. Various models have been 
proposed to analyze the dynamic behavior of AFM using this approach. However, in this 
approach, infinite numbers of resonant frequencies of cantilever-tip system are neglected. The 
distributed nature of structural flexibility in the AFM cantilever has direct influence on the image 
resolution and is preferred for modeling AFM cantilever.  

Distributed parameter modeling provides greater insight into the fundamental 
characteristics of the AFM dynamics. The micromechanical AFM cantilever in a distributed 
parameter model is considered as a multiple degrees of freedom (MDOF) system allowing for 
consideration of higher resonance frequencies in AFM [13–20]. In [13] the cantilever dynamics 
was modeled as a linear time-invariant system with a nonlinear output feedback to incorporate the 
tip-sample interaction. However, the tip-mass and the excitation of cantilever support were 
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neglected in the AFM model. Transfer function of the AFM micro cantilever is analyzed in [14]-
[15]. Several other distributed models based on Euler-Bernoulli beam theory are suggested in [16]-
[19]. All of these methods are based on classical Euler-Bernoulli beam model and neglect rotary 
inertia, shear deformation, axial effects and the tip mass. In addition, study the effects of 
interaction forces on the resonance frequencies and frequency response of the cantilever has not 
been carried out in most of them.  

In this paper, to study the effect of cantilever tip mass, tip-surface interacting forces, 
cantilever length and density on the system dynamics and resonance frequencies, using Euler-
Bernoulli model and Hamilton principle [21]-[24] a comprehensive model for AFM micro 
cantilever system is developed. 

In section 2, we provide a distributed parameter model for the AFM micro cantilever-tip 
based on Euler-Bernoulli method which takes into account the effect of tip mass. In section 3, the 
governing equations of motion are solved analytically. In section 4, the results obtained are 
analyzed using a numerical case study and the effects of tip mass, cantilever length, density and 
linearized interaction force (tip-sample stiffness) on the system dynamics are investigated and 
analyzed. Finally a conclusion is presented.  

 
2. Modeling 
 
To obtain the dynamic equation of the AFM micro cantilever system, we use Euler-

Bernoulli beam theory.  Detailed derivations for the Euler-Bernoulli model can be found in text 
books [22]-[24]. Fig.1 shows a schematic of distributed parameter model for the AFM system.  
 

 
Fig. 1. Schematic of distributed parameter model of the AFM system [16]. 

 
To derive the equation of motion we assume that: 
1- The AFM micro-cantilever is modeled as a flexible cantilevered beam with an equal cross 
section and density.  
2- The effect of shear deformation is neglected. 
3- Speed of motion for the platform is assumed negligible. 
4- There is no relative motion between the cantilever head end and the platform. 
5- One end of the cantilever beam is clamped to the base position with the mass m, while the tip 
mass  is attached to the free end of the micro-cantilever beam, as depicted in Fig.1.  em
6- The rigidity of the beam is EI , its length and density are L and ρ respectively.  
In this modeling we also consider the viscous air damping and structural damping for the micro-
cantilever motion [16]. The equation of motion is obtained using Hamilton's variation principle.  
The potential energy of a uniform beam due to bending is given by 

∫=
L

xx dxtxEIuPE
0

2 ),(
2
1                                                                  (1) 

Where is the lateral displacement of the micro-cantilever beam with respect to its base. 
And the subscript indicates the partial derivative with respect to position variable.  
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The kinetic energy is given by: 
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Where are the unit displacement (i.e. the PZT positioner), velocity and acceleration, 
respectively.  And the subscript indicates the partial derivative with respect to the time variable. 
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Hamilton’s principle may be stated as: 
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Where T is the kinetic energy, U is the potential energy of the system, ()δ is the first variation in 
the quantity in the parentheses and ncWδ is the work done by the nonconservative forces.  are 
two arbitrary times at which the configuration of the system is known.  

21, tt

In this system, the virtual work due to the non-conservative transverse force is: 
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Where B and C are the viscous and structural damping coefficients, respectively. is the input 
control force and  is the atomic interaction force given by: 
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Note that this equation governs the interaction force in the repulsive regime according to a 
Derjaguin-Mu¨ller-Toporov (DMT model). H is hamacker constant, is distance between the 
fixed base frame coordinate to the sample. R is the tip radius and parameter is the interatomic 
distance [13]. 

su

0a
∗E is the effective elastic modulus calculated by: 
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where Et and Es are the respective elastic moduli and  and are  the Poisson ratios of the tip and 
the sample, respectively. 

tv sv

Substituting equations (1), (2) and (4) in (3), the governing equations for micro cantilever can be 
obtained as: 
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With the boundary conditions: 
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The boundary conditions provided by van der Waalse and DMT tip-sample forces model which 
are nonlinear. They are linearized using a binomial expansion. In this case, we consider that the 
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system stays in a small enough neighborhood of the equilibrium set point u0, which can be 
adjusted moving the sample relative to the cantilever mount [14], [18]. 
By linearizing the interaction force around z0 we have: 
 

),( tLukf tsID −=                                                                    (9) 
 

Where the contact stiffness, is given by: tsk
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Considering equations (5) and (10), we have: 
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Note that the sign of  depends on the regime of the interaction force. It is negative when the 
force is attractive and positive when the force is repulsive [14]. 

tsk

Considering: 

tsts k
L
EIk ˆ3
3=                                                                        (12) 

 
tsk̂ is a parameter which determines the magnitude and regime of interaction force and  

is the cantilever spring constant.  

3/3 LEIk =

 
3. Solution of Governing Equation 
 
The equation of motion, boundary conditions, and initial conditions form an initial-

boundary-value problem which can be solved for example by using separation of variables and 
eigenfunction expansion. 

If sinusoidal vibrations of the cantilever base are assumed to excite the system by an 
amplitude D and angular frequencyω this signal is selected: 
 

tDtd ωsin)( =                                                                              (13) 
 

We assume the structural and viscous dampings are neglected. Therefore the governing equation 
converted to: 
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Using the method of separation of variable, we write: 
 

)()(),( tTxWtxu =                                                                             (15) 
 

Substituting (13) and (15) in (14), we have:  
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Where: 
)(LWkF tsID −=                                                                              (18) 

And: 
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Equation (19) is called the dispersion relationship. 
From Equations (16), is sinusoidal in time, and has both sinusoidal and hyperbolic terms: )(tT )(xW
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Where and are constant coefficients. iT iC
From (17) we have four boundary conditions in terms of  only. They are applied to the 
spatial solution to obtain the corresponding frequency equations and eigenfunctions.  
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Substituting (16) in (20) gives eignfunction (modal shapes) as: 
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And the frequency characteristic equation is given by: 
 

[ ][ ] [ ] 0coshcos12sinhcoscoshsin2 32 =++−− aLaLEIaaLaLaLaLmk ets ω       (22) 
 

Details of calculation are given in the Appendix I. 
The resonance frequencies are obtained as: 
 

2
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Where wave numbers are calculated from (22). na
The particular solution of the from (16) is: )(xW
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And the general solution of (16) is: 
 

[ ]( ) [ ]( )
[ ][ ] [ ] DD

aLaLEIaaLaLaLaLmk
axaxaLaLmaxaxaLaLmxW

ets

ee −
++−−

−+−−+
=

coshcos12sinhcoscoshsin2
coshcossinhsinsinhsincoshcos)( 32

22

ω
ωω          (25) 

 
Due to consideration of interaction forces and tip mass this model is more comprehensive than 
those recently published for AFM micro cantilever system [15], [18] and [19]. 

 
 
4. Numerical Analysis and Case Study 
 
To verify the accuracy of the presented model and to investigate the effects of tip mass, 

interaction forces, length and density of the micro-cantilever on the frequency response of the 
system, numerical analyses are carried out. Physical parameters accounted for the system are 
summarized in Table I. 
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Table 1. The physical parameters of the system. 
 

PROPERTIES SYMBOL VALUE UNIT 
Beam Rigidity EI 4.854e-13 2Nm  
Beam Thickness tb 4 mμ  
Beam Width b 35 mμ  
Beam Length L 500 mμ  
Tip Radius R 5 nm  
Intermolecular Distance 0a  1.2 nm  
AFM Base Motion 
Amplitude 

D 7 nm  

Beam Linear Density ρ  3.262e-7 mkg /  
Beam Mass of AFM m  0.001 kg  
AFM Tip Mass em  3e-11 kg  
Hamacker Constant H 10e-19 J  

 
The sensitivity of modes and resonance frequencies of an AFM cantilever is defined as the 

change in the flexural vibration frequency of a mode to the change in the tip-sample interaction. 
Hence, the oscillating cantilever is assumed to be in linear force interaction with a variety of 
vertical contact stiffness. 

In the first test we calculate the resonance frequencies of the micro-cantilever where the 
tip mass and the linearized interaction force are ignored. In this case, the frequency characteristic 
equation is given by: 

[ ] 0coshcos1 =+ aLaL                                            (24) 
 

And the normalized natural frequencies and wave numbers are given in Table II. Note that 
in this case the first natural frequency of the micro-cantilever beam is which 
is the first resonance frequency of micro-cantilever if tip mass and interaction force is neglected. 

sec)/(107173.1 4 rad×

 
Table 2. The characteristics of the system natural modes. 

 
MODE EIGNVALUE NATURAL 

FREQUENCY 
1 1.876 1 
2 4.695 6.263 
3 7.855 17.531 
4 10.996 34.356 
5 14.138 56.795 
6 17.279 84.834 
7 20.421 118.491 
8 23.562 157.746 
9 26.704 202.622 

10 29.846 253.108 
11 32.987 309.186 
12 36.129 370.890 
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In the second test, we consider the effects of tip mass on the dynamics of AFM. For this 

purpose we consider three values for . Figs. 2-4. Tables III-V show the normalized 
resonance frequencies obtained by numerical analysis in the attractive, free oscillating and 
repulsive regimes, respectively. 
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Fig.2. First four normalized resonance frequencies of the micro-cantilever as a function of normalized tip 

mass in the attractive regime. 
 

Table 3. Normalized resonance frequencies of the micro-cantilever as a function of normalized tip mass in 
the attractive regime. 

 
MODES\NORMALIZED 

MASS 
0 .2 .4 .6 .8 1 2 4 6 

1 0.949 0.886 0.833 0.789 0.751 0.718 0.599 0.473 0.403 
2 6.255 5.882 5.631 5.450 5.317 5.212 4.912 4.690 4.598 
3 17.531 16.580 16.037 15.693 15.454 15.282 14.836 14.549 14.440
4 34.355 32.652 31.822 31.343 31.033 30.820 30.296 29.985 29.869
5 56.793 54.212 53.118 52.530 52.167 51.921 51.354 51.018 50.904
6 84.831 81.276 79.955 79.279 78.881 78.607 78.012 77.664 77.552
7 118.488 113.880 112.349 111.605 111.177 110.896 110.269 109.922 109.799
8 157.741 152.036 150.319 149.523 149.080 148.781 148.131 147.781 147.664
9 202.616 195.740 193.880 193.050 192.576 192.266 191.601 191.247 191.129

10 253.101 245.042 243.043 242.163 241.666 241.351 240.689 240.325 240.209
11 309.177 299.912 297.792 296.873 296.378 296.047 295.369 295.003 294.893
12 370.880 360.361 358.1391 357.1915 356.688 356.365 355.661 355.300 355.179
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Fig.3. First four normalized resonance frequencies of the micro-cantilever as a function of normalized tip 
mass in the absent of interaction force. 

 
Table 4. Normalized resonance frequencies of the micro-cantilever as a function of normalized tip mass in 

the attractive regime. 
 

MODES\NORMALIZED 
MASS 

0 .2 .4 .6 .8 1 2 4 6 

1 1 0.932 0.878 0.831 0.791 0.756 0.632 0.499 0.425 
2 6.263 5.890 5.636 5.455 5.319 5.214 4.912 4.690 4.598 
3 17.531 16.580 16.037 15.693 15.454 15.282 14.836 14.549 14.440 
4 34.355 32.652 31.822 31.343 31.033 30.820 30.296 29.985 29.869 
5 56.793 54.212 53.118 52.530 52.167 51.921 51.354 51.018 50.904 
6 84.831 81.276 79.955 79.279 78.881 78.607 78.012 77.664 77.552 
7 118.488 113.880 112.349 111.605 111.177 110.896 110.269 109.922 109.799
8 157.741 152.036 150.319 149.523 149.080 148.781 148.131 147.781 147.664
9 202.616 195.740 193.880 193.050 192.576 192.266 191.601 191.247 191.129

10 253.101 245.042 243.043 242.163 241.666 241.351 240.689 240.325 240.209
11 309.177 299.912 297.792 296.873 296.378 296.047 295.369 295.003 294.893
12 370.880 360.361 358.139 357.191 356.688 356.365 355.661 355.300 355.179
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Fig.4. First four normalized resonance frequencies of the micro-cantilever as a function of normalized tip 

mass in the repulsive regime. 
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Table 5. Normalized resonance frequencies of the micro-cantilever as a function of normalized tip mass in 
the repulsive regime. 

 
MODES\NORMALIZED 

MASS 
0 .2 .4 .6 .8 1 2 4 6 

1 1.046 0.977 0.919 0.871 0.829 0.793 0.663 0.523 0.446 
2 6.268 5.895 5.641 5.458 5.322 5.217 4.914 4.690 4.598 
3 17.535 16.584 16.037 15.693 15.454 15.282 14.836 14.549 14.440 
4 34.355 32.658 31.822 31.343 31.033 30.820 30.296 29.985 29.869 
5 56.793 54.212 53.118 52.530 52.167 51.921 51.354 51.018 50.904 
6 84.831 81.276 79.955 79.279 78.881 78.607 78.012 77.664 77.552 
7 118.488 113.880 112.349 111.605 111.177 110.896 110.269 109.922 109.799
8 157.741 152.036 150.319 149.536 149.080 148.781 148.131 147.781 147.664
9 202.616 195.740 193.880 193.050 192.576 192.266 191.601 191.247 191.129

10 253.101 245.042 243.043 242.163 241.666 241.351 240.689 240.325 240.209
11 309.177 299.912 297.792 296.873 296.378 296.047 295.369 295.003 294.893
12 370.880 360.361 358.139 357.191 356.688 356.365 355.661 355.300 355.179

 
As expected, from data in Figs.2-4 and Tables III-V, it can be seen that increasing of the 

tip mass decreases the resonance frequencies of the system. Also, the resonance frequencies of the 
system are increased in the repulsive regime and are decreased in the attractive regime of the 
interaction force. 

In the third test, the effects of interaction forces on the AFM microcantilever dynamics are 
studied. The first resonance frequency in this test is:  which is related to the 
free oscillating micro-cantilever system with its nominal tip mass. For  the snap-in event 
occurs [14] and therefore not considered here. Results shown in Table VI confirm the validity of 
the presented model and depict the fact that, an attractive interaction results in a shift to lower 
frequencies and in contrast, repulsive interactive results in a shift to higher frequencies. 

sec)/(102996.1 4 rad×

1ˆ −<tsk

 
 

Table 6. Normalized resonance frequencies of the micro-cantilever as a function of normalized linearized 
effective spring constant.  

 
MODES\NORMALIZE
D EFFECTIVE SPRING 

CONSTANT 

-.1 -.01 0 .1 1 10 100 

1 0.949 0.995 1 1.048 1.407 3.140 5.467 
2 6.887 6.890 6.890 6.893 6.9197 7.249 12.100 
3 20.194 20.194 20.194 20.194 20.200 20.249 20.990 
4 40.726 40.726 40.726 40.726 40.726 40.742 40.914 
5 68.609 68.609 68.609 68.609 68.609 68.619 68.680 
6 103.87

2 
103.87

2 
103.87

2 
103.87

2 
103.87

2 
103.88

4 
103.90

9 
7 146.54

0 
146.54

0 
146.54

0 
146.54

0 
146.54

0 
146.54

0 
146.55

4 
8 196.60

0 
196.60

0 
196.60

0 
196.60

0 
196.60

0 
196.60

0 
196.60

0 
9 254.06

1 
254.06

1 
254.06

1 
254.06

1 
254.06

1 
254.06

1 
254.06

1 
10 318.92

3 
318.92

3 
318.92

3 
318.92

3 
318.92

3 
318.92

3 
318.94

5 
11 391.19 391.19 391.19 391.19 391.19 391.19 391.19
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9 9 9 9 9 9 9 
12 470.90

4 
470.90

4 
470.90

4 
470.90

4 
470.90

4 
470.90

4 
470.90

4 
 

To study the effects of cantilever length on resonance frequency, another numerical 
analysis is carried out and its results are given in Table VII. It is observed that increasing the 
cantilever length, decreases the resonance frequencies. 
 
 
 
 
 
 
 
 
 
 
 

Table 7. Normalized resonance frequencies of the micro-cantilever as a function of normalized cantilever 
length 

 
MODES\NORMALIZED 

CANTILEVER 
LENGTH  

.2 .4 .6 .8 1 2 4 6 8 10 

1 15.139 4.865 2.447 1.484 1 0.281 0.075 0.034 0.0197 0.012
2 153.124 39.909 18.301 10.551 6.890 1.829 0.480 0.218 0.124 0.080
3 478.513 121.647 54.834 31.219 20.194 5.234 1.356 0.613 0.348 0.224
4 988.274 249.240 111.635 63.232 40.726 10.425 2.675 1.205 0.684 0.440
5 1683.155 423.054 188.949 106.758 68.609 17.437 4.448 2 1.133 0.729
6 2563.502 643.126 286.801 161.832 103.872 26.284 6.675 2.996 1.696 1.090
7 3628.721 909.581 405.244 228.459 146.540 36.973 9.361 4.195 2.373 1.525
8 4879.416 1222.209 544.251 306.678 196.600 49.507 12.507 5.598 3.164 2.033
9 6315.455 1581.299 703.828 396.452 254.061 63.887 16.112 7.205 4.071 2.614

10 7937.013 1986.574 883.953 497.804 318.923 80.119 20.178 9.016 5.092 3.268
11 9743.059 2438.184 1084.713 610.719 391.199 98.200 24.706 11.032 6.228 3.997
12 11735.406 2936.175 1306.00 735.206 470.904 118.131 29.694 13.253 7.478 4.798

 
Finally the effects of cantilever density on the frequencies of the system are investigated and the 
results are shown in Figs. 5-7.  
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Fig.5. Effect of density of the tip on the first resonance frequency. 
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Fig.6. Effect of density of the tip on the first four resonance frequencies. 
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Fig.7. Effect of density of the tip on fifth to eighth resonance frequencies. 

 
It is seen from these figures that the tip density has considerable influence on the 

resonance frequencies for modes in higher frequency regions. The resonance frequencies decrease 
as the tip density increase in all modes and this effect is more pronounced for higher order 
frequencies. 

 
 
5. Conclusions 
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In this paper based on Euler-Bernoulli beam theory and by considering tip mass and 
linearized interaction force between cantilever-tip and sample, a distributed parameter model for 
AFM micro-cantilever-tip system is presented and using separation method the governing equation 
is solved analytically.  

The effects of tip mass, attractive and repulsive interaction force, cantilever density and 
length on the resonance frequencies of the system are studied by numerical analysis. Increasing the 
tip mass decreases the resonance frequencies, especially in higher frequencies. There is a positive 
shift in resonance frequencies in the repulsive interaction region and a negative shift in the 
attractive regime. Also, the cantilever density and length affect the system frequencies. The major 
contribution of this paper is consideration of tip mass in the Euler-Bernolli distributed parameter 
model of the AFM and the study its effects on system resonance frequencies. It is concluded from 
this analysis that neglecting the tip mass has a considerable effect on the dynamic analysis of AFM 
especially in higher modes.  
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Appendix I 
 
The homogenous solution of Eq. (16) and its time derivatives can be expressed as: 
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From boundary conditions we have: 
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by defining and as: 321 ,, BBB 4B
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Substituting (A6) in (A2-A5) gives: 
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And the characteristic equation is expressed by: 
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