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A fullerene graph is a cubic 3-connected plane lgraiph exact 12 pentagons and other
hexagons. In the present work, by Rayleigh’s shattmethod and Foster’s formulas, it is
shown that in a fullerene graph resistance dissheéween pairs of adjacent vertices lie

48 5
within a rather narrow interval ranging fr0ﬂ7=5 to 7 with their average value being

2(n-1)

3 ; and resistance distances between pairs of veriicdistance two lie within the
n

66 8 n-2
small interva{Y—g,—J with their average value beirg— . As a byproduct, bounds for
n

the global cyclicity index of fullerene graphs atgained.
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1. Introduction

LetG = (V(G), E(G) be a connect graph. A novel intrinsic metrid®nresistance
distance was introduced by Klein and Ratdn 1993 [1]. The term resistance distance was used
because of the physical interpretation: one imagumét resistors on each edgdzdind takes the
resistance distance between verticesl | to be the net effective resistance between veitaes
J » denoted b (i, J) . It is shown [1] tha€ (i, | ) equals the lengitl, (i, j) of the shortest path
between andj if and only if there is a unique single path betmiegnd] , while if there is more
than one path (even of different lengths), t€&a(i, j ) is strictly less thad (i, j) . On the basis

of the above property, tlgdobal cyclicity indexXalso interpreted as a “total excess bond
conductance”) was suggested [2]:

G G

C(G) =Y (Q(i, -, 1) =Y (Q0.i)-).

i i0j
where [J | denotes thatis adjacent tg and the summation is over all edge§ofBesides being
an important component of electrical circuit theand an intrinsic graph metric, resistance
distance is a relevant tool to characterize wavéua-like communication between two vertices
[3], and thus it is well studied in physical, matiatical and chemical literatures. For more
information, the readers are referred to [4-25] eafdrences therein.
Fullerenes are carbon-cage molecules exclusiveigisting of carbon atoms arranged on a sphere
with 12 five-membered faces and other six-membé&ees. These molecules are of great
importance in chemistry. The icosahed@},molecule, Buckministerfullerene, proposed firstly b
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Kroto et al. [26] and confirmed by later experimgef#t7, 28], is the archetype of fullerenes. A
fullerene graphas a molecular graph of a fullerene is a threeteggnd three-connected plane
graph where exactly 12 faces are pentagons andmemdaces are hexagons. So far, resistance

distances have been computed for some specialdntiegraphs, such &, and C,jisomers and

so on [4,7,13]. However, there hasn’'t been anyystutich takes resistance distances of general
fullerene graphs into consideration. In this paper will make some effort toward this end and
resistance distances between pairs of adjacemntegdnd pairs of vertices at distance two of
fullerene graphs will be studied.

2. Main results

In this section, resistance distances between phadjacent vertices and pairs of vertices
at distance two in fullerene graphs are investija®s a byproduct, bounds for the global cyclicity
index of fullerene graphs are obtained.

We first introduce some classical results in eleatmetwork theory which will be crucial
for obtaining the main results of the present paper
1 Series connection ruleesistors that are connected in series can Hacexp by a single
resistor whose resistance is the sum of resistors.

2. Parallel connection ruleresistors that are connected in parallel caneptaced by a
single resistor whose conductance (the inversesigtance) is the sum of conductances.

3. Rayleigh’s short-cut methof29]: Shorting certain sets of vertices togethen caly
decrease the resistance distance of the netwowkebattwo given vertices. Cutting certain edges
can only increase the resistance distance betweaegiven vertices.

4, Foster’s first formulg30]: the sum of resistance distances betweepaais of adjacent
vertices of a graph witimvertices is equal to—1.
5. Foster's second formulg81]:
Q.(,]
Z G( ’ J ) =n- 2 ,
d

v
whereQ (i, j ) is measured across the end-vertices of two adj@ckygsv andvj, d, is the
degree of vertex, and the summation is taken all adjacent enligasd vj .

Before giving our main result, it is also necesgaryntroduce formulas for computing resistance
distances of weighted wheel graphs.

The wheel grapW\/, is a graph that contains a cycle of onderand for which every graph
vertex in the cycle is connected to one other wgftghich is known as the center) W), the
vertices corresponding to the cy€eare labeled from 1 t0in cyclic order, and the center is

labeled as1+1. Explicit formulas for computing resistance distes il\/, have been obtained by

Bapat and Gupta [25]. In fact, they also consideratbre generalized case that the wheel graph is
a weighted wheel in which the edges conneelandi ,i [I{1, 2,...,n}, called the spokes of the

wheel, have the same weigh{the weight of the edge denote the resistancleeoétige).
Let

1 ywY-4  yy-4
y=2+—, U= V= ,
a 2 2
and defineG, (a) as the generalized Fibonacci number
k_pk
G (a)=H"".
H-V

Then resistance distances in weighted wheel gv§ptan be computed as follows.
Lemma 1. [25] Let n = 3be a positive integer. The following results had//, :
(1) The resistance distance between venegxl and vertex, i {1, 2,...,n}is
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2

Q, (,n+1)=Q (n+1|)—GG—

-G
(2) The resistance distance between verticgs1{l, 2,... ,n}is
. G?
0, ()= —2 —[2- 246,
G,-2G, G,

. o n
lj=if, if |J_||SbJ
L
n=|j=il, if|j ||>bJ

Theorem 2. Let F be a fullerene graph withvertices. Then for any two adjacent verticesidj ,

48
—=<Q <
o= Qe 1)s

wherek =

. . . . . 2(n-1
Moreover, the average value of resistance distamewgeen pairs of adjacent vertlces—%’—).
n

Proof. First consider the lower bound. Choose a facielec which containdj as an edge.
Define

S={VOV(P|VI M @ orv has a neighbor in}.

Short all the vertices M(F) — Stogether and denote the resulted grapk byThen by
Rayleigh’s short-cut method,

Q- (1,1)2Qp0.J)-
Now we comput€_.(i, ) . Clearly, by simplifying resistors connected imgleel and in series

according to series and parallel connection rulescould finally get a weighted wheel graftas
shown in Fig. 1 (for simplicity, we do not mark owights on edges whose weights are equal to
1). Thus

Q. (1,1)=Qy(.)).
To computd,, (i, ] ), we distinguish the following two cases.

Case 1. Cis a hexagon. In this casé/isW, witha zg . Thus
1

porlopi 228 y+\/ﬁ:4+\/7 V:y-\/ﬁ:4—\/7

a 3 3 ’ <
G - - 3<“>[(4+J_) - (4- f?)]

U=V 27

Then by Lemma 1, the resistance distance betwaed | is

. G? 237
QWG(LJ):—G[Z ] 1= .
G,-2G, G 385

Case 2. Cis a pentagon. In this case, Wi witha zg . ThenG, is the same as given in Case 1

and thus by Lemma 1, the resistance distance beti®l j can be computed as

. G? _48
QWs (I' J ) = 2 [2 ] 1= 79

G,-2G, G
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Comparing the result in Case 1 with the result&seC2, we can draw the conclusion that

Q,31,])=2 % and the lower bound is proved.

Fig. 1. Calculating the resistance distance betweemd | in F 'in the proof of Theorem

2. Graphs in the first row correspond to the cts&C is a hexagon and graphs in the
second row correspond to the case fBas a pentagon.

For the upper bound, €€ 'be the facial cycle which has a common eggeith C.
Consider the sub-graph induced®sndC', denoted by " . Then by Rayleigh’s short-cut
method, we have

Qc(,1)< Q)
On the other hand, by the series and parallel aimmerules,
. 1 1 5
" = < =,
QF (I ’ J ) }+ 1 N 1 1 7
1 M@)-1 |V(G)-1 =~ 5 5

Thus the upper bound is proved.

n__. , : .
Note that~ has% pairs of adjacent vertices. Then the average \@fluesistance

distances between pairs of adjacent verticestimmbtforward consequence of Foster’s first
formula.

From Theorem 1, bounds for the global cyclicityeraf fullerene graphs may be easily
determined.

Theorem 3. Let F be a fullerene graph withvertices. Then

3 31
—n<C(F)<s—n.

5 32

Now we turn to resistance distances betvpans of vertices at distance two.

Theorem 4. Let F be a fullerene graph withvertices. Then for any two adjacent vertitesd |

at distance two,

66 . 8
—<Q.(,j)s=
79 c(0,]) >
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Moreover, the average value of resistance distame®geen pairs of vertices at distances two is
n-2

n
Proof. Frist we show the lower bound. Sincend | are at distance two, we could find a path

= ikj of length two connectingand] . Clearly thatP must be contained in a facial cy€e As
in the proof of Theorem 2, accordingd@q we could defin&, construct the sub-grafh' and
simplify F 'to weighted wheel gra' in the same way. Then by Rayleigh’s short-cut meth
Qe(1,])2Qe0.,))=Qy ().
Now we distinguish two cases:

Casel. Cis a hexagon. In this casé/isW, witha 22 . Thus by Lemma 1,

G? G _48
Q — 4
o (:1)= GlZ—ZG[ Gz] 2755

Case 2. Cis a pentagon. In this case, Wi witha zg . Then by Lemma 1,

G’ G 66
Q,(,j)==——">=[2-21+G, =
G, - 2G, G, 79

Thus it is easily obtained th@t. (i, ) = 675_569 .
For the upper bound, I1&'and C"be the two facial cycles each of which has a cometge
with C such that their common edge is containel irDenote the sub-graph induced®y C'
andC"by F,, and the sub-graph obtained frdfby deleting the common edgkof C'andC"
byF,, see Fig. 2. Then by Rayleigh’s short-cut method,
Q. (,1)<Qr0.1)<Q (4 )
By series and parallel connection rules, it is éagybtain that
- 1 1
= < =
Qe (i,) 1 1 1 - 1 1, 1
+=+ ++
|V(C')|—2+|V(C")|— 2 2 |V(C}— 2 66262 2 6 2
And thus the upper bound is proved.

Note that there ar@npairs of vertices at distance two and the sumsistance distances at
distance two i3(n— 2) by Foster’s second formula. Thus the average vialderived.

~ | o

Fig. 2. lllustration of sub-graphk; andF, in the proof of Theorem 4. The pah= ikj is
illustrated in bold line.
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