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1. Introduction 

 

   The third geometric-arithmetic index is introduced by B. Zhou, I. Gutman, B. Furt--ula, 

Z. Du[1, 2]. It is defined as follows [1, 2]: for a simple connected graph G,  
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  where mu is defined as follows: let x be a vertex and uv be an 

edge of graph G, the distance between x and uv is defined as follows: d(x,  uv) = min{ d(x, u), 

d(x, v) }, where d(x, u) is the length of the shortest path that  connects x and u in G. For 

uv∈E(G), let mu = |{ f∈E(G): d(u, f) < d(v, f) }|. GA3 index is a possible tool for QSAR/QSPR 

researches and it gives somewhat better   predictions than those of GA2 does [1, 2].  

 In this paper we study the third geometric-arithmetic index of TUC4C8(S) nanotorus. For 

the figure of TUC4C8(S) nanotorus, see [3].  

 

2. Main result  

 

Theorem 2.1. Let G  be TUC4C8(S)[p, q] nanotorus, where p≥2, q≥2, we have  

3 ( ) 12 .GA G pq  

Proof. In the following, let q≥3. Firstly, we label the levels of G from bottom to top with 1, 2, …, 

2q respectively. Secondly, we label the vertices in level i with xi1, xi2, …, xi,4p, where i = 1, 2, …, 

2q. Clearly, the edge number of G is 12pq. By the symmetry of p and q, in the following let p≥q. 
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Case 1. e = x14 x15.  

Clearly, the edges in A are equidistant from x14 and x15, where  

A = {x14 x15, x24 x25, x34 x35, …, x2q,4 x2q,5;  

x1,2p+4 x1,2p+5, x2,2p+4 x2,2p+5, x3,2p+4 x3,2p+5, …, x2q,2p+4 x2q,2p+5}. 

  When we delete the edges in A, we obtain two graphs A1 and A2 from G. Without loss of 

generality, let x14∈V(A1) and x15∈V(A2). Obviously, 
14 1| ( ) |,xm E A

15 2| ( ) | .xm E A  Thus, we 

have 

14 15
6 2 .x xm m pq q    

Hence, we have 

14 15
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0.5( )

x x

x x

m m

m m



 

Case 2. e = x12 x13.  

Clearly, the edges in B are equidistant from x12 and x13, where  

B = {x12 x13, x22 x23, x32 x33, …, x2q,2 x2q,3;  

x1,2p+2 x1,2p+3, x2,2p+2 x2,2p+3, x3,2p+2 x3,2p+3, …, x2q,2p+2 x2q,2p+3}. 

  When we delete the edges in B, we obtain two graphs B1 and B2 from G. Without loss of 

generality, let x12∈V(B1) and x13∈V(B2). Obviously, 
12 1| ( ) |,xm E B  

13 2| ( ) | .xm E B  Thus, 

we have 

12 13
6 2 .x xm m pq q    

Hence, we have 
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12 13
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


 

Case 3. e = x22 x32.  

Subcase 3.1. q is odd. 

Clearly, the edges in C are equidistant from x22 and x32, where  

C = {x22 x32, x23 x33, x26 x36, x27 x37, …, x2,4p-2 x3,4p-2, x2,4p-1 x3,4p-1;  

xq+2,1 xq+3,1, xq+2,4 xq+3,4, xq+2,5 xq+3,5, xq+2,8 xq+3,8, …, xq+2,4p-3 xq+3,4p-3, xq+2,4p xq+3,4p}. 

  When we delete the edges in C, we obtain two graphs C1 and C2 from G. Without loss of 

generality, let x22∈V(C1) and x32∈V(C2). Obviously, 
22 1| ( ) |,xm E C  

32 2| ( ) | .xm E C  Thus, 

we have 

22 32
6 2 .x xm m pq p    

Hence, we have 

22 32

22 32

1.
0.5( )

x x

x x

m m

m m

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Subcase 3.2. q is even. 
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Clearly, the edges in D are equidistant from x22 and x32, where  

D = {x22 x32, x23 x33, x26 x36, x27 x37, …, x2,4p-2 x3,4p-2, x2,4p-1 x3,4p-1;  

xq+2,2 xq+3,2, xq+2,3 xq+3,3, xq+2,6 xq+3,6, xq+2,7 xq+3,7, …, xq+2,4p-2 xq+3,4p-2, xq+2,4p-1 xq+3,4p-1}. 

  When we delete the edges in D, we obtain two graphs D1 and D2 from G. Without loss of 

generality, let x22∈V(D1) and x32∈V(D2). Obviously, 
22 1| ( ) |,xm E D  

32 2| ( ) | .xm E D  Thus, 

we have 

22 32
6 2 .x xm m pq p    

Hence, we have 
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0.5( )
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


 

Case 4. e = x11 x21.  

Subcase 4.1. q is odd. 

Clearly, the edges in F are equidistant from x11 and x21, where  

F = {x11 x21, x14 x24, x15 x25, x18 x28, …, x1,4p-3 x2,4p-3, x1,4px2,4p;  

xq+1,2 xq+2,2, xq+1,3 xq+2,3, xq+1,6 xq+2,6, xq+1,7 xq+2,7, …, xq+1,4p-2 xq+2,4p-2, xq+1,4p-1 xq+2,4p-1}. 

  When we delete the edges in F, we obtain two graphs F1 and F2 from G. Without loss of 

generality, let x11∈V(F1) and x21∈V(F2). Obviously, 
11 1| ( ) |,xm E F  

21 2| ( ) | .xm E F  Thus, we 

have 

11 21
6 2 .x xm m pq p    

Hence, we have 

11 21

11 21

1.
0.5( )
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
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Subcase 4.2. q is even. 

Clearly, the edges in H are equidistant from x11 and x21, where  

H = {x11 x21, x14 x24, x15 x25, x18 x28, …, x1,4p-3 x2,4p-3, x1,4px2,4p;  

xq+1,1 xq+2,1, xq+1,4 xq+2,4, xq+1,5 xq+2,5, xq+1,8 xq+2,8, …, xq+1,4p-3 xq+2,4p-3, xq+1,4p xq+2,4p}. 

  When we delete the edges in H, we obtain two graphs H1 and H2 from G. Without loss of 

generality, let x11∈V(H1) and x21∈V(H2). Obviously, 
11 1| ( ) |,xm E H  

21 2| ( ) | .xm E H  Thus, 

we have 

11 21
6 2 .x xm m pq p    

Hence, we have 

11 21

11 21

1.
0.5( )

x x

x x

m m

m m



 

Case 5. e = x11 x12.  

Clearly, the edges in I are equidistant from x11 and x12, where  
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I = {x11 x12, x23 x24, x35 x36, …, xq,2q-1xq,2q;  

xq+1,1 xq+1,2, xq+1,3 xq+1,4, xq+1,5 xq+1,6, …, xq+1,2q-1 xq+1,2q； 

x1,2p+1 x1,2p+2, x2,2p+1 x2,2P+2, x3,2p+1 x3,2p+2, …, x2q,2p+1x2q,2p+2;  

xq+1,4p-2q+3 xq+1,4p-2q+4, xq+1,4p-2q+5 xq+1,4p-2q+6, …, xq+1,4p-3 xq+1,4p-2, xq+1,4p-1 xq+1,4p; 

xq+2,4p-2q+3 xq+2,4p-2q+4, xq+3,4p-2q+5 xq+3,4p-2q+6, …, x2q-1,4p-3 x2q-1,4p-2, x2q,4p-1 x2q,4p }. 

  When we delete the edges in I, we obtain two graphs I1 and I2 from G. Without loss of generality, 

let x11∈V(I1) and x12∈V(I2). Obviously, 
11 1| ( ) |,xm E I  

12 2| ( ) | .xm E I  Thus, we have 

11 12
6 3 1.x xm m pq q     

Hence, we have 

11 12

11 12

1.
0.5( )

x x

x x

m m

m m



 

 By the definition of GA3(G), when q≥3, the theorem follows. When q = 2, we can prove the 

theorem similarly.  

Remark: let p1 = 2, q1 = 6, p2 = 3, q2 = 4, we have GA3(TUC4C8(S)[p1, q1]) = GA3(TUC4C8(S)[p2, 

q2]). Hence, the third geometric-arithmetic index is not good enough.  
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