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The chalcogenide system CoIn(2-2X)Cr(2X)S4 (x = 0.75, 0.85, 1.0) was characterized using 
X-ray powder diffraction data. All compounds crystallize in the space group Fd 3 m 
(Nº227) and belongs to a normal spinel structure which can be expressed by the formula 
[Co2+]tetr[In3+,Cr3+]2

octS4, where the Co(II) atoms occupying the tetrahedral sites while the 
In(III) and Cr(III) atoms share the octahedral sites. 
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1. Introduction 
 
Ternary chalcogenide sulfides of the type II-Cr2S4 (II= Mn, Fe, Co, Ni), belonging to the 

family of semiconductor compounds II-III2-VI4, have been extensively studied recently owing to 
the combination of semiconducting behavior and strong ferrimagnetism [1,2]. The colossal 
magnetoresistance (CMR) observed in FeCr2S4 [3] has led to renewed interest in the some 
thiospinels compounds such as MnCr2S4, FeCr2S4 and CoCr2S4 [4]. Thus, CoCr2S4 has been 
described as a ferrimagnetic semiconductor with a critical temperature of 223 K [5], which is the 
highest Curie temperature among the mentioned ternary chromium sulfides compounds [6,7]. For 
the other hand, the CoIn(2-2X)Cr(2X)S4 semiconducting system is attractive from the crystallographic 
viewpoint, because the phase with x= 1 (CoCr2S4) crystallizes with a normal spinel structure [1] 
while the phase with x= 0 (CoIn2S4) crystallizes with a inverse spinel structure [8,9]. From the 
magnetic point of view should be interesting to study the influence of the In3+ admixtures on the 
cation distribution and magnetic ordering in this spinel. Recent studies has shown interesting 
magnetic properties related with the exchange interaction between the Cr3+ ions [10,11]. In this 
work we present the structural analysis of the spinel system CoIn(2-2X)Cr(2X)S4. 

 
2. Experimental 
 
Single crystals of each phase were grown by the chemical transport method from ternary 

polycrystalline material prepared by solid state reaction. Starting material for the crystal growth 
was a polycrystalline compound prepared by firing suitable mixtures of high purity elements in 
evacuated silica ampoule. The single crystals were grown in a two zone furnace. The optimal 
growing condition was 950°C for the source zone and 900°C for the crystallization region over a 
period of nine days. The transporting agent was chromium chloride. The samples were finely 
ground in an agate mortar and then sieved to 106 μm to get a homogeneous grain size. The 
resulting powders were loaded on a zero-background holder covered with a thin layer of grease. X-
ray powder pattern were collected, at room temperature, in a Siemens D5005 diffractometer using 
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Bragg-Brentano geometry in θ/θ reflection mode. CuKα radiation (λ= 1.5418 Å) was used at 30kV 
and 15mA. This instrument is equipped with a diffracted beam graphite monochromator and a 
scintillation detector. The diffraction patterns were collected by steps of 0.02° (2θ) over the 
angular range 10-120°, with a counting time of 35 s per step. Quartz was used as an external 
standard. 

 
 

3. Results and discussion 
 
X-ray powder diffracton patterns of CoIn(2-2)Cr(2X)S4, x = 0.75, 0.85, 1.0, are show in 

Figure 1.  A search in the ICDD-PDF database [12], using the software available with the 
diffractometer, indicated that the powder patterns , for x = 0.75 and x= 0.85, contained small 
amounts of CoIn2S4 (PDF N° 76-1973). The peak positions of the interest phase were indexed 
using the program Dicvol04 [13], and cubic cells were founds. The Rietveld refinement [14] were 
performed using the Fullprof [15] program and the atomic coordinates of previously reported for 
CoCr2S4 from neutron powder diffraction [1]. In each case, Indium and Chromium cations share 
the 16d Wickoff position. Atomic positions of CoIn2S4 [9] were included as a second phase in the 
refinement. Rietveld refinement results are summarized in Table. Figure 2 shows the observed, 
calculated and difference profile for the final cycle of refinements. This Figure show the unit cell 
diagram for the three phases. 
 

 
 

Fig. (1)  Powder X-ray diffraction patterns for the diluted magnetic semiconductor system 
CoIn(2-2X)Cr(2X)S4. The * indicate the CoIn2S4 phase present in each pattern 

 
 
The crystallographic analysis confirms that the alloys with x = 0.75, 0.85 and 1.0 belongs 

to a normal spinel structure which can be expressed by the formula [Co2+]tetr[In3+,Cr3+]2
octS4, where 

the Co(II) atoms occupying the tetrahedral sites while the In3+ and Cr3+ cationes share the 
octahedral sites. This arrangement is shown in Figure 2, and is based on a cubic close-packed of 
large anions with smaller cations occupying tetrahedral and octahedral sites.  
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Table (1)  Rietveld refinement results for CoIn(2-2X)Cr(2X)S4. 
 

Composition (x)  0.75 0.85 1 
crystal system  cubic cubic cubic 
space group (N°227)  Fd 3 m Fd 3 m Fd 3 m 
a (Å)  10.0700(6) 10.0096(5) 9.9247(1) 
V (Å3)  1021.2(1) 1002.88(9) 977.58(2) 
mol. w. (g/mol)    291.2 
dcalc (g/cm3)    3.96 
% CoIn2S4  10.1 2.1 0 
 Site occupancy factors 

for cations 
  

Co                 8(a) ⅛, ⅛, ⅛ 1 1 1 
Cr               16(d) ½, ½, ½ 0.74(1) 0.86(1) 1 
In  0.26(1) 0.14(1) 1 
 Site atomic coordinate 

for anion x 
  

S                  32(e) x, x, x 0.2571(2) 0.2579(2) 0.2583(1) 
  bond distances   
Co-S           (tetr.)  2.271(2) 2.304(2) 2.291(1) 
Cr(In)-S      (oct.)  2.413(2) 2.426(2) 2.402(1) 
Cr-Cr (shorter)  3.510(2) 3.539(2) 3.509(1) 
     
Rietveld factors     
Rexp (%)  4.9 5.0 4.6 
Rp (%)  6.0 6.2 4.4 
Rwp (%)  6.7 7.0 5.7 
χ2  1.9 2.0 1.6 

 
 

The Co-S and Cr(In)-S bond distances in the three alloys (Table 1) are in good agreement 
with those observed in other chalcogenide structure compounds such as CoFeS2 [19], CoGa2S4 
[20], FeCr2S4 [21] and NiCr2S4 [22].  

Figure 3 shows the evolution of the unit cell volume for the CoIn(2-2)Cr(2X)S4 system as 
function of Cr content (x), which decreases linearly with increasing Cr3+ content and follows, 
within the limits of experimental error, Vegard’s law. This curve suggests for this system, a solid 
solution formation in all range of compositions. 
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Fig. (2)  Rietveld refinement plots and unit cell diagram for CoIn(2-X)Cr(2X)S4 
 

 
Fig. (3)  Unit cell volume as function of the Cr content (x) in CoIn(2-2X)Cr(2X)S4. The dot lines represent linear 

regression. CoIn2S4 (x = 0) value was taken from Ref. [10] 
 
 

4. Conclusions 
 
The chalcogenide system CoIn(2-2X)Cr(2X)S4 (x = 0.75, 0.85, 1.0) was studied by the X-ray 

powder diffraction technique which confirms that these alloys crystallizes with a normal spinel 
structure. 
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