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In this work, a bijection between the vertices of the graph of C4C8(R) nanotube and a 
subset of Z4 is given. Then a distance function over this graph is defined. Using this 
distance function, all distance-based topological indices of the nanotube can be computed 
very easily. The diameter of the nanotube is computed as an example. Also a 
MATHEMATICA program is written for computing the distance-based topological 
indices of the nanotube. 
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1. Introduction 
 
A topological index is a real number related to a graph of a molecule, which is structural. 

It does not depend on the labeling or pictorial representation of the graph. In recent years, there has 
been considerable interest in the general problem of determining topological indices of nanotubes 
and nanotori [1-6]. It has been established, for example, that Wiener and hyper-Wiener indices of 
polyhex nanotubes and tori are computable from the molecular graph of these structures.  
Accordingly, some of the interest has been focused on computing topological indices of these 
nanostructures. Let G be an undirected connected graph without loops or multiple edges, with 
vertex set V(G) and the edge set E(G). The distance between two vertices x and y is denoted by 
d(x,y). The Wiener index W(G) of G, which is the oldest topological index is a distance-based 
topological index and is defined as the sum of distances between all vertices of the graph: 
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There are some other distance-based topological indices. The hyper-Wiener index WW(G) 
is defined as  
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The diameter d of a graph is the largest distance between any two vertices, i.e. the largest 
d(u,v) value in the distance matrix. Balaban and co-authors introduced the reverse Wiener index. 
They showed that starting from the distance matrix and subtracting from d each d(u,v) value, one 
obtains a new symmetrical matrix which, like the distance matrix, has zeroes on the main diagonal 
and, in addition, at least one pair of zeroes of the main diagonal corresponding to the diameter in 
the distance matrix. The obtained general formula for reverse Wiener index of a graph G with N 
vertices and diameter is  
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Let u and v be two adjacent vertices of the graph G and e=uv be the edge between them. 
The Balaban index of a molecular graph is introduced by Balaban [7] as one of less degenerated 
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topological indices. It calculates the average distance sum connectivity index according to the 
equation  
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Where m is the number of edges in G and µ=m+n-1 (n is the number of vertices of G) is the 

cyclomatic number of G and  

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vudud  is the distance sum of a vertex u of G. 

In this paper, a bijection between the vertices of C4C8(R) nanotube and a subset of Z4 is 
given. Then a distance function on the vertices of the graph is defined. Using this function, one can 
easily compute all distance-based topological indices of the graph. As examples some topological 
indices and the diameter of the graph are computed. 

 
 
Theory and Results 
 
Let T=T[p,q] be the molecular graph of  C4C8(R) with p rhomb in every row and q rhomb 

in every column as shown in Figure 1. 

 
Fig.1. Two dimensional Lattice of T[8,4] 

 
It is easy to see that T has 4pq vertices and 6pq-p edges. Consider the vectors  
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as shown in Figure 2.  Put a1=e1-e2-e3 and a2= e2-e3-e4. 
 

 
Fig.2. The vectors e1, e2, e3 and e4. 

 
Now we give a mathematical model for V(T), the vertices of T. Let a=(0,0,0,0), b=(0,1,0,0), 
c=(0,0,1,0) and d=(0,1,1,0). Then V(T)={v+na1+ma2 | v=a,b,c,d, 0≤n≤p-1,  0≤m≤q-1}. 

 
Theorem 1.  Let A=Z∩[0,p-1] and B=Z∩[-q+1,0] where Z is the set of integers. There is a 
bijection  
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from the set }}1,0{},1,0{,,|),,,{( 43142121
4

4321  xxxxxxBxAxZxxxx  to 

the set of vertices of C4C8(R) nanotube T=T[p,q]. 
Proof.  By the geometry of T, it is clear that Φ is well-defined. We prove that this map is 1-1 and 
onto. Let x=(x1,x2,x3,x4),  y=(y1,y2,y3,y4) and Φ(x)= Φ(y). By considering the vectors ei, 1≤i≤4, and 

Φ(x)= Φ(y), we have )(
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But the coordinates of x and y are integers, therefore x1=y1, x4=y4, x2+x3=y2+y3 and x2-x3=y2-y3.  
Consequently we have x=y. Therefore Φ is 1-1.  
Now let )(TVv  . Without loss of generality, let v=b+na1+ma2. Since b=e2, v=ne1+(m-n+1)e2-
(m+n)e3-me4, we have Φ(n,m-n+1,-m-n,-m)=v  and it is easy to check that (n,m-n+1,-m-n,-m) is an 
element of  .■ 
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Lemma 1.  Let c=(p,-p,-p,0). For every two vertices u=(u1,u2,u3,u4) and v=(v1,v2,v3,v4) 
of T, we define 
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Then d(u,v) is the minimum distance between u and v. 
Proof.  It is clear that the chiral vector of T is c=pa1=pe1-pe2-pe3=(p,-p,-p,0). Also after rolling up 
the lattice of T, every )(TVu coincides with u+c and u-c. But for every )(, TVyx  , f(x,y) is 
the minimum distance of x and y in the two dimensional lattice of the nanotube. So the result is 
clear.■ 
 
Corollary 1. Let u=(u1,u2,u3,u4) and v=(v1,v2,v3,v4) be two vertices of T. Then 
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Proof. From the geometry of T and the fact that the first coordinate of every corner of any rhomb 
in a fix row is fixed, the result is clear.■ 
 
Lemma 2.  Let u=(u1,u2,u3,u4), v=(v1,v2,v3,v4), u1-v1=r and u4-v4=s. Put Max{|r|,|s|}=a and 
Min{|r|,|s|}=b.  We have  
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where for any x=(x1,x2,x3,x4),  
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Proof.  By definition of the function f, we have f(u,v)=|r|+|s|+|u2-v2|+|u3-v3|. From our model, it 
is clear that |u2-v2|=s+r+g(u,v) and |u3-v3|=s-r+h(u,v) where  
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Now we have },,,{ ssrra  . Without loss of generality, we assume that a=r. The proof of 

remaining cases are similar. In this case r≥0 and |s|≤r. Let rs  . Then |u2-u3|+|v2-
v3|=3r+|s|+g(u,v)-h(u,v). It is easy to check that g(u,v)-h(u,v)= )()( 11 uv    and so in this case 
we get the result. Now let s=r≠0. Then |u2-u3|+|v2-v3|=2r+g(u,v)+|h(u,v)| and so 
f(u,v)=3r+|s|+g(u,v)+|h(u,v)|.■ 
 
As an application of our mathematical model, we compute the diameter of T[p,q] nanotube. 
 
Theorem 2. The diameter of T=T[p,q] is 
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Proof. From the geometry of T and its symmetry, it is clear that 
}|)),0,1,0,0(({)(  xxdMaxTd . Note that the vertex (0,0,1,0) is not unique with this 

property. It is easy to see that d(T)=d((0,0,1,0),(x1,x2,x3,x4)) if and only if  1,
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when p is even, and 1,
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p
x  when p is odd. But by Theorem 1, x2=-(x1+x4) or x2=-

(x1+x4)+1 and x3=x4-x1 or x3=x4-x1+1. So we must consider four cases. By similarity of 
computations we just consider the case that p is even and q≤[(p+1)/2]. 
In this case x1=p/2 and x4=-q+1 and q≤p/2. So x2=-(p/2-q+1) or –(p/2-q+1)+1 and x3=-q-p/2+1 
or –q-p/2+2.  If  x2=-(p/2-q+1) and x3=-q-p/2+1, then  

d((0,0,1,0),(x1,x2,x3,x4))=f((0,0,1,0),(x1-p,x2+p,x3+p,x4))=p+q+p/2-2 
If  x2=-(p/2-q+1)+1 and x3=-q-p/2+2, then  

d((0,0,1,0),(x1,x2,x3,x4))=f((0,0,1,0),(x1-p,x2+p,x3+p,x4))=p+q+p/2-2 
In other subcases, we have d((0,0,1,0),(x1,x2,x3,x4))=p+q+p/2-1. Hence in this case the result is 
true.■ 
 
MATHEMATICA program for computing distance-based topological indices 
 
Using our mathematical model and our distance function, we write some programs for computing 
distance-based topological indices of the nanotube as follows. Let A be the adjacency matrix and 
DD be the distance matrix of the graph of nanotube. 
p=4:q=6: (for example) 
a={0,0,0,0};b={0,1,0,0};c={0,0,1,0};d={0,1,1,0}; 
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x={1,-1,-1,0};y={0,1,-1,-1};z={p,-p,-p,0}; 
V={}; 
For[i=0,i≤p-1, 
   For[j=0,j≤q-1, 
      AppendTo[V,a+i*x+j*y]; 
      AppendTo[V,b+i*x+j*y]; 
      AppendTo[V,c+i*x+j*y]; 
      AppendTo[V,d+i*x+j*y]; 
    j++]; 
i++]; 
ff[u_,v_]:=Sum[Abs[u[[i]]-v[[i]],{i,1,4}]; 
f[u_,v_]:=Min[ff[u,v],ff[u+z,v],ff[u-z,v]]; 
A=Table[t[i,j],{i,1,4p*q},{j,1,4p*q}]; 
 For[i=1, i≤4p*q, 
     For[j=1, ,j≤4p*q, 
         If[f[V[[i]],V[[j]]]==1,t[i,j]=1, t[i,j]=0]; 
     j++]; 
i++]; 
DD=Table[f[V[[i]],V[[j]]],{i,1,4p*q},{j,1,4p*q}]; 
MatrixForm[A]; 
MatrixForm[DD]; 
 
 
The outputs of the above program are the adjacency matrix A and the distance matrix DD. 
By adding the line “W=0.5*Sum[Sum[DD[[i]][[j]],{i,1,4p*q}],{j,1,4p*q}]” one can compute the 
Wiener index of the graph. Also by adding  
“WW=0.5*W+0.125*Sum[Sum[DD[[i]][[j]]2, {i,1,4p*q}],{j,1,4p*q}] 
one can obtain the hyper-Wiener index of the graph. 
Also by adding the line 
RW=2p*q*(4p*q-1)*Max[DD]-0.5*Sum[Sum[DD[[i]][[j]],{i,1,4p*q}],{j,1,4p*q}] 
we get the reverse-Wiener index of the nanotube. 
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