
Chalcogenide Letters                                 Vol. 11, No. 12, December 2014, p. 661 - 670 
 

 

 

 

FIRST-PRINCIPLES STUDY OF THE ELASTIC AND THERMODYNAMIC 

PROPERTIES OF CuBiS2 PHOTOVOLTAIC ABSORBER MATERIAL 

 
 

S. R. ZHANG
a*

, D. P. ZENG
b
, L. H. XIE

c
, X. P. DENG

a
, K. H. SONG

a
 

a
Department of Physics and Information Engineering, Huaihua University, 

Huaihua 418008, China  
b
Department of Mathematics, Huaihua University, Huaihua 418008, China  

c
Physics department, Sichuan normal university, Chengdu 610068, China                              

 

 
The ground state parameters such as the lattice constants (a, b, and c), bulk modulus (B0) 

and pressure derivative of bulk modulus (
'

0B ) are calculated for CuBiS2 crystal using 

density functional theory. Detailed comparisons are made with published experimental and 

theoretical data and show generally good agreement. The nine independent elastic 

constants (c11, c22, c33, c44, c55, c66, c12, c13, and c23) were evaluated. Based on the 

quasi-harmonic Debye model, we have obtained successfully the bulk modulus B, Debye 

temperature Θ and Grüneisen parameter γ, heat capacities Cv, entropy S, as well as thermal 

expansion coefficient α as a function of the pressure and temperature of CuBiS2 in the 

ranges of 0-10 GPa and 0-600 K for the first time.  

 

(Received November 4, 2014; Accepted December 12, 2014) 

 

Keywords: CuBiS2, Density functional theory (DFT), Elastic properties,  

         Thermodynamic properties 

 

1. Introduction 
 

In the field of thin-film photovoltaic technologies, the cadmium telluride (CdTe) and 

copper indium gallium selenide (CIGS) solar cell possessing a dominant position [1, 2]. However, 

due to the limited availably and toxicity of the elements in these compounds, their terawatt scale 

application is restrained. Therefore, the research interests of scientists are attracted to find the 

alternative inexpensive and earth abundant materials for efficient thin-film solar cells.  

Ternary chalcogenide semiconductor CuBiS2, which possesses some excellent properties 

such as the proper band gap and high optical absorption, shows considerable technological 

potential for solar cell [3-6]. The available experimental results on the geometry and electronic 

structure of CuBiS2 show it crystallizes in an orthorhombic, layer structure with the pnma space 

group and possesses a direct band gap of 1.65 eV [3, 4]. There are several theoretical works on this 

material concerning electronic band structure, optical properties were reported recently [5, 6]. 

However, there are no reported theoretical nor experimental studies on the elastic and 

thermodynamic properties of CuBiS2 up to now.  

In this work, we present a detailed and systematic study on the structure, elastic properties, 

and thermodynamic properties of CuBiS2 compound by using first-principles calculation based on 

density functional theory.      
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2. Calculated details 
 

2.1. Geometry optimization 

 

The calculated results have been obtained using the plane-wave pseudopotential method 

within the frame work of the density functional theory implanted in the CASTEP code[7, 8]. We 

adopt the non-local Vanderbilt-type ultrasoft pseudopotentials (USPP) [9] for the interactions of 

the electrons with the ion cores, together with the generalized gradient approximation (GGA) for 

exchange-correlation function in the scheme of Perdew–Burke–Ernzerhof (PBE) [10]. The 

electronic states were 3d
10

4s
1
 for Cu, 6s

2
6p

3
 for Bi, and 3s

2
3p

4
 for S. We set the plane-wave cutoff 

energy to be  400.00 eV and employed a 8 × 12 × 4 Monkhorst–Pack mesh grid for the special 

points sampling integration over the irreducible Brillouin-zone (IBZ). The calculations assured a 

very high level convergence with respect to the total energy difference within 1.0 × 10
-6

eV/atom.  

 

2.2. Elastic properties 

 

To calculate the isothermal elastic constants, the internal energy E(ηij) for the strained 

CuBiS2 crystal, instead of the Helmholtz free energy A, was used to perform the first-principles 

calculations. The elastic constants are extracted as proportional to the second order coefficient in a 

polynomial fit of the total energy as a function of Lagrangian strains ηij [11-13], which can be 

present as follows:  
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For the orthorhombic CuBiS2, there are nine independent elastic constants. By choosing 

the applied deformation, the energy associated with these distortions can be obtained and all the 

elastic constants, bulk modulus, shear modulus, Young’s modulus and Poisson ratio can then be 

determined. 

 

2.3. Thermodynamic properties 

 

The thermal properties of a material determine the suitable conditions for initiating and 

maintaining the quality of device fabrication. In order to investigate the thermal properties of 

CuBiS2 under high pressure and high temperature we have used the Gibbs program [14]. This 

program is based on the quasi-harmonic Debye model, in which the non-equilibrium Gibbs 

function ),;(* TPVG takes the form of  

 

));(()(),;(* TVAPVVETPVG Vib 
                    (2) 

 

where E(V) is the total energy per unit cell, PV corresponds to the constant hydrostatic pressure 

condition, Θ( )V  is the Debye temperature, and VibA is the vibrational Helmholtz free energy, 

which can be written as [15, 16] 
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where n is the number of atoms per formula unit,
 (Θ / )D T  represents the Debye integral, and for 

an isotropic solid, Θ  is expressed as
 
[15]  
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where M is the molecular mass per unit cell, Bs is the adiabatic bulk modulus, which is 

approximated by the static compressibility [14] 
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( )f σ  is given by Refs.[17,18],   is the Poisson ratio.  

Therefore, the non-equilibrium Gibbs function ),;(* TPVG  as a function of ),;( TPV  can be 

minimized with respect to volume V  
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                                (6) 

 

By solving Eq. (6), one can get the thermal equation of state V(P, T). The heat capacity Cv, the 

entropy S, and the thermal expansion coefficient α  are taken as: 
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where γ is the Grüneisen parameter, which is defined as: 
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Through the quasi-harmonic Debye model, one could calculate the thermodynamic 

quantities of CuBiS2 at any pressures and temperatures from the calculated E-V data at T=0 and 

P=0.  

 

 

3. Result and discussion  
 

3.1. Structure properties 

The structural properties are very important for understanding the solid properties from the 

microscopic viewpoint. We calculated the total energy as a function of the unit-cell volume around 

the equilibrium cell volume V0. The calculated energies as a function of the primitive-cell volume 

for CuBiS2 are shown in Fig.1. Then, we fitted the calculated E-V points to the Birch-Murnaghan 

equation of state (EOS) to calculate derived structural properties, 
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where E0 is the equilibrium energy, B0 is the bulk modulus,
'

0B is the first derivative of 0B with 

pressure P. The calculated lattice constants a, b, and c, bulk modulus 0B and its pressure 

derivative
'

0B are presented in Table1, together with the available experimental and theoretical 

results. It can be seen that the obtained lattice constants a, b, and c are 6.283, 3.907, and 14.214 Å 

respectively, with 2.31%, 0.1%, and 2.13% deviation from the experimental values [4]. The bulk 

modulus 0B and the pressure derivative of bulk modulus 
'

0B of CuBiS2 are the first report. Up to 

now, the experimental and other theoretical bulk modulus values about this promising material 

have not been reported, our result can provide useful reference for experimental researchers. 

 

 
Fig. 1. Calculated total energy as a function of volume of CuBiS2 crystal 

 

 

Table 1.Lattice constants (a, b, and c), bulk modulus ( 0B ), pressure derivative of bulk modulus  

(
'

0B ) of CuBiS2. 

 

 a (Å) b (Å) c (Å) 
0B (GPa) '

0B (GPa) 

 This work  6.283  3.907 14.214 73.52 5.06 

 Theor.

（HSE06） 

6.18
a
  3.925

a 
 14.643

a
  —— —— 

6.045
b
 3.807

b
 14.545

b
 —— —— 

Exp. 6.1414
c 

 3.9191
c
 14.524

c
 —— —— 

   a Ref. [5]; b Ref. [6]; c Ref. [4]  

 

3.3. Elastic properties 

 

The elastic constants of solids are important parameters because they can provide useful 

information about the mechanical and dynamic characteristics, especially the stability and stiffness 

of materials. Thus, it is necessary to study the elastic constants to understand the mechanical 

properties of CuBiS2.The elastic stiffness tensor of orthorhombic compounds have nine 

independent components because of the symmetry properties of the D2h space group, namely c11, 

c22,, c33, c44, c55, c66, c12, c13 and c23 in Young’s notation, respectively. In this work, the calculated 

single crystal elastic constants of CuBiS2 at zero pressure are displayed in the Table 2.  
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Table 2. Elastic constants cij of orthorhombic CuBiS2, calculated from them: bulk (BVRH) 

and shear modulus (GVRH) in the Voigt-Reuss-Hill approximation, and the Young modulus. 

All values are given in gigapascal. 

 

c11 c22 c33 c44 c55 c66 c12 c13 c23 

97.65 117.05 153.89 36.92 25.95 24.49 29.44 36.77 63.08 

BV BR BH GV GR GH σ E B/G 

69.69 64.64 67.16 33.42 31.42 32.42 0.292 83.795 2.07 

 

Unfortunately, to our knowledge, there are no experimental values about the elastic 

stiffness coefficients have been reported for CuBiS2. So, to check the suitability and reliability of 

our calculated values, we tested firstly the obtained constants have or not met the Born stability 

criteria [19], which for the orthorhombic CuBiS2 lattice requires that 

 





















0)222(

0,0,0

,0,0,0,0)2(

,0)2(,0)2(

231312332211

665544

332211233322

133311122211

cccccc

ccc

cccccc

cccccc

                  (12) 

 

One can find that our calculated elastic constants satisfy all these conditions, implying that 

CuBiS2 crystal is mechanically stable. 

The Voigt [20] and Reuss [21] limits for the bulk modulus (B) and shear modulus (G) are:  

 

))(9/2())(9/1( 231312332211 ccccccBV                       (13) 

 )(2)(/1 132312332211 ssssssBR                            (14) 

 )(3)(4/15 665544132312332211 sssssssssGR            (15) 

))(5/1())(15/1( 665544132312332211 cccccccccGV        (16) 

 

In the Voigt-Reuss-Hill (VRH) approximation [22], the B and G of the polycrystalline 

material are approximated as the arithmetic mean of the Voigt and Reuss limits:  

 

      )(
2

1
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1
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It can be noted that the bulk modulus values BVRH is an equivalent combination of elastic 

constants cij. It can be found that the difference between the BVRH and the fitted bulk modulus B0 is 

little. Therefore, we would say that our calculated elastic constants are suitable and reasonable. It 

is certainly that these theoretical values of elastic constants of CuBiS2 still waiting for 

experimental proofs.  

One of the most important parameters for estimating mechanical properties of compounds 

is elastic anisotropy of crystal. The elastic anisotropy behavior of a orthorhombic crystal can be 

measured by the shear anisotropic factors[23]:  
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For an isotropic crystal the factors A1, A2, and A3 must be 1, while any value smaller or 

greater than 1 indicates anisotropy. The magnitude of a deviation from 1 is a measure of the degree 

of elastic anisotropy possessed by the crystal. These calculated independent elastic shear 

anisotropy factors A1 = 0.83, A2 = 0.71, and A3 = 0.63, respectively, obviously deviate from 1, 

indicating a strong elastic anisotropy of the orthorhombic CuBiS2.  

Two other parameters are important for technological and engineering applications: 

Young’s modulus E and Poisson’s ratio σ. E and σ can be calculated using Hill’s bulk and the 

shear modulus (BH and GH), and they are given as: E = (9BHGH) / (3BH+GH), σ = (3BH-2GH) / 

(6BH+2GH). Young’s modulus is often used to provide a measure of stiffness of a solid, i.e., the 

larger is the value of Young’s modulus, the stiffer is the material. The value of Poisson’s ratio σ 

provides the information about the characteristics of the bonding forces. The σ = 0.25 and 0.5 are 

the lower and upper limit for the central forces in solids, respectively. Our calculated value of σ is 

equal to 0.292 at 0 GPa, lying in the typical range of values of ionic rather than covalent materials 

[24]. 

The ratio of shear modulus to bulk modulus B/G has been proposed by Pugh to roughly 

estimate brittle or ductile behavior of materials[25], a high (low) B/G values is associated with 

ductility (brittleness). The critical value which separates ductile and brittle materials is 1.75. Our 

result shows that the B/G ratio is 2.07 for CuBiS2, which means the crystal is ductile. The 

calculated bulk and shear modulus, Young’s modulus and Poisson’s ratio, along with the ratio of 

B/G are all listed in the Table 2. 

 

 

3.4 Thermal properties 

 

Based on the quasi-harmonic Debye model, we have investigated the thermodynamic 

properties of the CuBiS2 over a range of pressures from 0 to 10 GPa. The temperature and pressure 

dependences of the bulk modulus B for CuBiS2 are plotted in Fig. 2. It can be seen from the Fig. 

2(a) that B decreases with T increasing at a given pressure, while it increases with P increasing at a 

given temperature. It also shows that the effect of increasing pressure on CuBiS2 is the same as 

that of decreasing temperature. However, the effect of the pressure on the bulk modulus is more 

important than that of the temperature. From Fig. 2(b), we find that, at zero pressure, the bulk 

modulus B is nearly a constant at low temperature, whereas B decreases dramatically with the 

increase of temperature.  

 
Fig. 2. Pressure and temperature dependence of the bulk modulus of CuBiS2.  
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The values of the Debye temperature Θ as a function of pressure and temperature are listed 

in Table 3. It can be noticed that, with the applied pressure increasing, the Debye temperatures are 

almost linearly increasing. While the Debye temperature Θ decreases with the increasing 

temperature at a given pressure. The temperature and pressure dependence of Θ reveal that the 

thermal vibration frequency of atoms in CuBiS2 changes with temperature and pressure. The 

Grüneisen parameter γ, which describes the anharmonic effects in the vibrating lattice and gives 

the volume dependence of Debye temperature Θ, can correctly predict the anharmonic properties 

of a material. In Table 3, we also list the values of Grüneisen parameter γ at different temperatures 

and different pressures. It shows the value γ increases as the temperature increases at a given 

pressure, while it decreases as the pressure increases at a given temperature. 

 

 
Table 3  Debye temperature Θ (K) and Grüneisen constant of the CuBiS2 at temperatures  

T (K) and pressures P (GPa) 

 

T P 0 2 4 6 8 10 

0 Θ 352.70 373.76 391.88 407.79 421.69 434.29 

   2.387 2.166 1.985 1.829 1.693 1.565 

300 Θ 350.23 371.87 390.38 406.54 420.67 433.41 

   2.414 2.185 2.000 1.842 1.703 1.574 

600 Θ 346.22 368.77 388.12 404.45 418.95 431.91 

   2.458 2.217 2.022 1.862 1.720 1.590 

 

 

As very important parameters, the heat capacities of a substance not only provide essential 

insight into the vibrational properties but also mandatory for many applications. The variations of 

the heat capacities Cv versus temperature at various pressures are shown in Fig. 3. It can be found 

that the constant volume Cv increase with T
3
 at lower temperature T, while with the increase of 

temperature T, Cv follows the Debye model and approaches the Dulong–Petit limit indicating the 

thermal energy at high temperature excites all phonon modes, which is common to all solids at 

high temperature. Fig. 3 also indicate that temperature and pressure have opposite influences on 

the heat capacity and the effect of temperature on the heat capacity is more significant than that of 

pressure. It is worth mentioning that, in our work, the value of Cv is 93.29 J mol
-1 

K
-1 

at 300 K and 

zero pressure. The relationship between entropy S and temperature T is displayed in Fig. 4. It is 

found that at given pressure P, the entropy S increases mostly exponentially with the temperature T. 

It can also be noticed that the effects of temperature on entropy S are more important at high 

temperature than those at low temperature. At 300 K and zero pressure, the obtained value of 

entropy is 120.9 J mol
-1 

K
-1

for CuBiS2.  
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Fig. 3. variation of the heat capacity Cv with temperature under different pressure. 

 

 
Fig.4. Variation of entropy S with temperature T at various pressures. 

 

 

Within the quasi-harmonic approximation, the anharmonicity is restricted to the thermal 

expansion. Fig. 5 shows the volume thermal expansion coefficient dependence on pressure and 

temperature. It can be seen that at a given temperature, the volume thermal expansion coefficient 

increases quickly especially at zero pressure below the temperature 300 K, and it gradually tends 

to a linear increase at higher temperature region, it is due to the electronic contribution. However, 

it is noted from Fig. 5 (b) that, as the pressure increases, the volume thermal expansion coefficient 

decreases strongly at 300 K. These results indicating the anharmonic effects are important at low 

temperatures and high pressures for CuBiS2. Meanwhile, at 300 K and zero pressure, the volume 

thermal expansion coefficient α = 1.491 × 10
-5

 K
-1

 and rapidly decreases by 19.11%, 32.39%, 

42.18%, 49.83%, 56.13% with pressure increasing to 2, 4, 6, 8, 10 GPa, respectively. 
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Fig.5. Pressure and temperature dependence of the thermal expansion coefficient α 

 

 

4. Conclusions 
 

In summary, the geometry structure and elastic properties of CuBiS2 crystal were 

investigated from first-principles calculations. The ground state properties such as equilibrium 

lattice constants (a, b, and c), bulk modulus B0 and its first derivative
'

0B obtained from our 

calculation agree well with the available experimental and theoretical values. According to the 

calculated elastic constants, the structure of CuBiS2 is mechanically stable. The three shear 

anisotropic factors (A1 = 0.83, A2 = 0.71, and A3 = 0.63) implied the strong elastic anisotropy of 

CuBiS2 crystal. Our calculated value of Poisson’s ratio σ is equal to 0.292 at 0 GPa, indicating that 

CuBiS2 is a ionic material. Meanwhile, the calculated ratio B/G is 2.07, suggesting a ductile 

deformation failure for CuBiS2.  

Through the quasi-harmonic Debye model, we have successfully obtained the pressure and 

temperature dependence of the bulk modulus B, Debye temperature Θ, the Grüneisen parameter γ, 

the heat capacity Cv, the entropy S, and the thermal expansion coefficient α of CuBiS2 crystal as 

these are essential for thin film growth. To the best of our knowledge, most of the investigated 

properties are reported for the first time and hoped to stimulate the succeeding studies. 
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