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A dendrimer is an artificially manufactured or synthesized molecule built up from 
branched units called monomers. The nanostar dendrimer is part of a new group of 
macromolecules that appear to be photon funnels just like artificial antennas. The aim of 
this paper is topological study of such molecules. Our main result is computing Szeged 
index of an infinite class of nanostars. It is proved that the method is general and can be 
applied for other nanostars.  
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1. Introduction 
 
Nanobiotechnology is a rapidly advancing area of scientific and technological opportunity 

that applies the tools and processes of nanofabrication to build devices for studying biosystems. 
Dendrimers are one of the main objects of this new area of science. Here a dendrimer is a synthetic 
3-dimensional macromolecule that is prepared in a step-wise fashion from simple branched 
monomer units, the nature and functionality of which can be easily controlled and varied. The 
nanostar dendrimer is part of a new group of macromolecules that the structure and the energy 
transfer mechanism must be understood.   

A map taking graphs as arguments is called a graph invariant or topological index if it 
assigns equal values to isomorphic graphs. There are several topological indices have been defined 
and many of them have found applications as means to model chemical, pharmaceutical and other 
properties of molecules.  

The Szeged index is a topological index introduced by Ivan Gutman. The aim of this paper 
is to present a novel method for computing this topological index for dendrimer nanostars. The 
presented method is general and can be used for other distance based topological indices.  

 
2. Definitions 
 
Some algebraic definitions used for the study are given. Let G be a graph with vertex and 

edge sets V(G) and E(G), respectively. As usual, the distance between the vertices u and v of G is 
denoted by d(u,v) and it is defined as the number of edges in a minimal path connecting the 
vertices u and v. 

A molecular graph is a graph such that vertices represent atoms and edges represent bonds. 
These graphs have been used for affinity diagrams showing a relationship between chemical 
substances. Obviously, the degree of each atom in a molecular graph is at most four. 
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Fig. 1. The molecular graph of the nanostar dendrimer NS[4]. 
 
 

The Wiener index is the first distance based topological index was introduced in 1947 by 
chemist Harold Wiener1 as the half-sum of all topological distances in the hydrogen-depleted 
graph representing the skeleton of the molecule. We encourage the readers to consult papers2,3 and 
references therein for background material and historical aspect of the Wiener index. 

The Szeged index is another topological index introduced by Ivan Gutman.4-7 To define 
the Szeged index of a graph G, we assume that e = uv is an edge connecting the vertices u and v. 
Suppose nu(e) is the number of vertices of G lying closer to u and nv(e) is the number of vertices of 
G lying closer to v. Then the Szeged index of the graph G is defined as Sz(G) = 
∑e=uv∈E(G)[nu(e)nv(e)]. Notice that vertices equidistant from u and v are not taken into account. We 
encourage the reader to consult our earlier paper8-12 for background material as well as basic 
computational techniques. Our notations are standard and taken mainly from the standard book of 
graph theory. 

 
 
3. Theorem and Proof 
 
In recent research in mathematical chemistry, particular attention is paid to distance-based 

graph invariants. Throughout this section NS[n] denotes the molecular graph of a nanostar 
dendrimer with exactly n generation, Fig. 1. The Szeged index of this nanostar is computed for the 
first time. The aim of this section is to prove the following theorem: 

Theorem. The Szeged index of the nanostar dendrimer NS[n] is computed as follows:  
.121682.208564.330242.99844.18432 ++−+ nnnn nn  

 
Proof. To prove the theorem we partition the edges of NS[n] into 20 classes as follows: 
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  In Fig. 2, these edges are depicted. For simplicity, we name these edges, type 1, type 2, …, 
type 20. To compute the Szeged index of NS[n], it is enough to compute nu(e) and nv(e) for above 
edges. In Table 1, these values for each type are reported. 

 
Fig. 2. The core of the nanostar dendrimer NS[n]. 

 
Table 1. The values of nu(e) and nv(e) for the edges of the nanostar dendrimer NS[n]. 

 
nv(e) nu(e) Edges nv(e) nu(e) Edges 

48.2n+1 + 36 – 2n+4 2n+4 - 10 Type 11 1 48.2n+1+25Type 1 
48.2n+1 + 24 – 2n+5 2n+5 + 2 Type 12 48.2n+1 + 28 – 2n+4 2n+4 - 2 Type 2 
48.2n+1 + 31 – 2n+4 2n+4 - 5 Type 13 48.2n+1 + 18 – 2n+5 2n+5 + 8 Type 3 
48.2n+1 + 31 – 2n+3 2n+3 - 5 Type 14 48.2n+1 + 24 – 2n+5 2n+5 + 2 Type 4 
48.2n+1 + 39 – 2n+4 2n+4 - 13 Type 15 48.2n+1 + 25 – 2n+5 2n+5 + 1 Type 5 
48.2n+1 + 34 – 2n+4-i 2n+4-i - 8 Type 16 48.2n+1 + 26 – 2n+5 2n+1 Type 6 
48.2n+1 + 35 – 2n+4-i 2n+4-i - 9 Type 17 48.2n+1 + 27 – 2n+5 2n+1 - 1 Type 7 
48.2n+1 + 36 – 2n+4-i 2n+4-i - 10 Type 18 48.2n+1 + 28 – 2n+5 2n+5 - 2 Type 8 
48.2n+1 + 31 – 2n+3-i 2n+3-i - 5 Type 19 48.2n+1 + 34 – 2n+4 2n+4 - 8 Type 9 
48.2n+1 + 39 – 2n+4-i 2n+4-i - 13 Type 20 48.2n+1 + 35 – 2n+4 2n+4 - 9 Type 10 
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Since edges of NS[n] is partitioned By calculations given in Table 1, on can see that 

.121682.208564.330242.99844.18432
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This completes our proof.                                                                                                          
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