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In this paper, we investigate some many-particle equilibrium properties of the Coulomb 

glass model to deepen into the thermal behavior of glassy chalcogenides. Concretely, we 

focus on the dependence of the energy on the temperature, the many-particle density of 

states and the absorbed and emitted power. The results show an interesting conclusion: at 

very low temperatures, the effect of soft transitions, called soft dipoles, is dominant, which 

gives the material its characteristic glassy behavior, characterized by slow dynamical rates.  
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1. Introduction 
 

In some recent publications, the connection between glassy chalcogenides and Coulomb 

glasses has been clearly pointed out [1-4]. Coulomb (or equivalently, electron) glasses are systems 

with localized electronic states due to the presence of disorder and long-range interactions between 

carriers. When the temperature is low enough, and the disorder and interaction typical energies 

become relevant, the system shows glassy behavior [5].  

The study of the equilibrium properties of Coulomb glasses can be employed to deepen 

into the nature of the glassy state of amorphous chalcogenides. In a previous work, some of the 

authors introduced the extension of the one-particle equilibrium properties, namely, the minimum 

of the one-particle density of states (DOS) and the fluctuation-dissipation theorem (FDT), to 

characterize some key aspects out of equilibrium [3]. However, another kind of equilibrium 

properties, the many-particle ones, deserves a separate study in order to achieve a deep 

comprehension of the glassy dynamics of these systems. Among them, in this work, we will focus 

on the total energy of the system, the many-particle density of states (MPDOS) and the total 

emitted and absorbed power, to show that the intrinsic dynamics of the Coulomb glass is 

dominated by electronic transitions that constantly occur back and forth, called soft dipoles. 

The standard tight-binding Hamiltonian that describes the Coulomb glass model is [6] 

  

                              𝐻 = ∑ 𝜙𝑖𝑛𝑖

𝑖

+ ∑
(𝑛𝑖 − 𝐾)(𝑛𝑗 − 𝐾)

𝑟𝑖𝑗
𝑖<𝑗

                                                 (1) 

 

As described in previous works [4-6], 𝜙𝑖  is the so-called random site potential, which 

represents the structural disorder of the sample, 𝑛𝑖 is the occupancy number of site i, which can 

either be 0 or 1, K is the compensation, which ensures the electrical neutrality of the system, and 

𝑟𝑖𝑗 is the distance between sites i and j.  

The total potential of each site is called the site energy, defined as follows 
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                                                 𝜖𝑖 = 𝜙𝑖 + ∑
(𝑛𝑗 − 𝐾)

𝑟𝑖𝑗
𝑗≠𝑖

                                                         (2) 

 

Coulomb glasses behave like doped insulating systems, in which the transitions are 

performed by electrons jumping from a occupied to an empty site, which positions match with that 

of the impurities of the system, due to the strong localization of electronic states [5, 6]. 

Accomplishing one of these particular transitions is equivalent to change from a particular 

electronic configuration labeled as 𝛼 to another one 𝛽, differentiated by the occupancy of one site. 

The energy difference between 𝛼 and 𝛽 is, due to Eq. (1) 

 

        ∆𝐸𝛼𝛽 = ∑ 𝜙𝑖

𝑖

(𝑛𝑖
𝛽

− 𝑛𝑖
𝛼) + ∑ ∑

(𝑛𝑖
𝛽

− 𝐾) (𝑛𝑗
𝛽

− 𝐾) − (𝑛𝑖
𝛼 − 𝐾)(𝑛𝑗

𝛼 − 𝐾)

𝑟𝑖𝑗
𝑗≠𝑖𝑖<𝑗

         (2) 

 

where 𝑛𝑖
𝛼  and 𝑛𝑖

𝛽
 are components of the occupancy vector before and after the transition, 

respectively. If we consider an individual jump of an electron, between generic sites l and k, the 

occupancy vectors only differ in these subscripts, and then Eq. (2) reduces to 

 

                                                       ∆𝐸𝛼𝛽 = ∆𝐸𝑘𝑙 = 𝜖𝑙 − 𝜖𝑘 −
1

𝑟𝑘𝑙
                                                      (3) 

 

This energy difference can be interpreted as the difference of site energies minus an 

excitonic term, which is the Coulomb interaction of the pair electron-hole created, responsible of 

the appearance of the Coulomb gap in the DOS [5]. The key aspect of Eq. (3) is that, from the 

ground state, the system has to be stable to one-particle transitions, ∆𝐸𝑘𝑙 ≥ 0, so the distance 

between the occupied and the empty site is restricted by the expression 

 

                                                                       𝑟𝑘𝑙 >
1

𝜖𝑙 − 𝜖𝑘
                                                                      (4) 

 

From this last equation we infer that, as we approach the ground state, the electrons have 

to jump increasingly long distances, because the difference of site energies approaches zero. 

A soft dipole is a special kind of transition, constituted by sites with great differences of 

site energies, but very near in distance, in such a way that the excitonic term in Eq. (3) 

compensates the energy difference. These transitions are repeated back and forth and are very time 

consuming. Coulomb glasses present a distribution of local energy minima, called the pseudo 

ground states and, at very low temperatures. Generally, the system gets stacked in one of them for 

a long time, mainly due to the dynamic of soft dipoles, thus taking a great transition time to move 

to another minimum of lower energy [5].  

 

 

2. Mathematical model and numerical details 
 

We study the equilibrium properties of semiconductor samples doped with impurities 

randomly placed, in the regime of strong localization and very low temperatures. This fact is 

equivalent to assume that the system behaves as a dielectric material and transitions happen by 

electrons jumping between impurities, in the regime of variable range hopping [6,7]. We consider 

that the position of the electron matches that of the impurity, since the value of the localization 

length, 𝜉, is considered very small [5]. We study squared samples of lateral dimension L and 

implement periodic boundary conditions.  
The units employed in the numerical simulations are: 1/𝑙0 is the energy and temperature 

unit, 𝑙0 = 𝐿/√𝑁 is the length unit, once taken the electron charge, e, and Boltzmann constant, 𝑘B, 

as the unit. In the present simulations we consider a range of temperatures 𝑇 ∈ [0.001, 0.3]. We 
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consider systems sizes ranging between 500 and 2000 sites, setting a minimum distance between 

them of 0.2. The range of disorder is W = 2 and the localization length is 𝜉 = 1. Our time unit is 

the characteristic electron-phonon time, 𝜏0. To ensure the neutrality of the system we choose K = 

1/2, and consider that each particle only interacts with its nearest image. In that way, we do not 

perform Ewald summation. 
We employ two kinds of algorithms in our simulations. For the lowest temperatures we 

use optimization algorithms [8, 9], specifically designed to get the lowest energy configurations of 

the system. The results obtained allow us to apply the standards of statistical mechanics in order to 

calculate magnitudes in equilibrium. These algorithms fail at higher values of T so, in those cases, 

we employ another kind of method. We perform Monte Carlo simulations by means of the 

Tsigankov et al. hybrid algorithm [10], at high enough temperatures, so the system quickly reaches 

thermal equilibrium. At very low T this last method becomes inefficient because the system does 

not reach the equilibrium state easily. The employment of both algorithms simultaneously allows 

us to study a wider range of temperatures. 

For simulations using the lowest energy configurations, a statistical average has been 

carried out over 1000 samples, i. e., different arrangements of sites. For the Monte Carlo 

algorithm, the total number of simulations, 𝑛tot, is defined as 𝑛tot = 𝑛s ∙  𝑛occ, where 𝑛s is the 

number of samples and 𝑛occ is the number of initial occupations of electrons per sample. In this 

work, we have set 𝑛s = 100 and 𝑛occ ranging between 10 and 50.  

 

 

3. Results and discussion 
 

Energy as a function of temperature 

Now we go on analyzing the many-particle equilibrium properties of Coulomb glasses. 

We start by studying the dependence of the total energy of the system on the temperature. First of 

all, let us suppose a non-interacting system. We can write the average energy per particle of the 

system,〈𝐸〉/𝑁, as follows 

 

                                                
〈𝐸〉

𝑁
= ∫ 𝜖 𝑔(𝜖)d𝜖

∞

−∞

= 𝑔0 ∫ 𝜖
∞

−∞

𝑓(𝜖)d𝜖                                               (5) 

 

Here 𝑔(𝜖) is the DOS of a single particle. This function presents no singularity in absence of 

interactions and, at very low temperatures, is a good approximation to assume it is constant [11]. 

Therefore, it has been taken out of the integral in Eq. (5). We call that constant value 𝑔0, and the 

probability of site occupancy, 𝑓(𝜖). In equilibrium, this last function corresponds to a Fermi-Dirac 

distribution (FDD, herein) at the room temperature, T [6]. 

We can develop an intuitive argument to evaluate the dependence of 〈𝐸〉 on temperature. 

To do this, we rely on the particular form of the functions 𝑔(𝜖) and 𝑓(𝜖), shown qualitatively in 

Figure 1. We assume that the site energy 𝜖 is fixed with respect to the ground level. 
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Fig. 1. Qualitative form of the probability of occupancy, 𝑓(𝜖), and the density of states, 

𝑔0, for a disordered system with strong localization in the absence of interactions, for 

several temperatures (colored lines). The value of 𝑔0 is independent of T. 

  

 

At any temperature, the DOS has a constant value, while the FDD depends on T. At T = 0, 

it is a descending step function centered on the Fermi level (red line), while at 𝑇 ≠ 0 the slope of 

the function in the central section begins to increase (other colours). By employing the theoretical 

expression of the FDD [12] we can easily find that the slope in this section is equal to 1/T. If we 

look at the area near the Fermi level in Figure 1, we notice that the electrons that were in the 

region A at T = 0 have "moved" to the region B once the temperature has increased. The typical 

horizontal displacement is of the order of T, since the vertical height of the FDD is constant. 

Furthermore, the number of displaced electrons is proportional to the area of the region A. We 

approximate that region by a right triangle of hypotenuse 1/T, which is the slope of the FDD.  

The area of the triangle is T. The multiplication of the number of electrons that have moved on 

average by the typical shift in energy gives the T dependency of the total energy. Thus 

 

〈𝐸〉 ∝ 𝑇2 
 

We can calculate in a more rigorous way the integral given in Eq. (5). If we write the expression of 

𝑓(𝜖) and we perform the change of variable 𝑥 = 𝜖/𝑘B𝑇, we obtain 

 
〈𝐸〉

𝑁
= 𝑔0(𝑘B𝑇)2 ∫

𝑥

1 + exp(𝑥)

∞

−∞

d𝑥 

 

If we calculate the value of 〈𝐸〉 relative to the energy of the ground level, 〈𝐸0〉, and consider the 

form of 𝑓(𝜖) when T = 0, we can modify the previous expression as follows 

 

〈𝐸〉 − 〈𝐸0〉

𝑁
= 𝑔0(𝑘B𝑇)2 ∫ 𝑥 (

1

1 + exp(𝑥)
− 1)

0

−∞

d𝑥 + ∫
𝑥

1 + exp(𝑥)
d𝑥

∞

0

= 

 

                                      = 2𝑔0(𝑘B𝑇)2 ∫
𝑥

1 + exp(𝑥)
d𝑥

∞

0

=
𝜋2

6
𝑔0(𝑘B𝑇)2                                    (6) 

 

confirming the quadratic dependence of the energy on the temperature. This calculation is 

independent of the degree of localization of the system. 

Now, we try to extend the analysis above to the interacting case, whose result now 

depends on the degree of localization. We will focus on the strong localized regime. When the 

interaction among the particles in the system is not negligible, the approximation of considering 
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the density of states as a constant, with a value independent of the temperature, fails. In this case, 

𝑓(𝜖)  is described again by a FDD at the room temperature [5]. The qualitative graphical 

representation of both 𝑔(𝜖) and 𝑓(𝜖) in this situation is shown in Figure 2. Again, 𝜖 is fixed with 

respect to the ground level. The solid line in the plot refers to the FDD, and the dashed line 

represents 𝑔(𝜖), which shows the characteristic form of the Coulomb gap. 

 

 
Fig. 2. Qualitative form of the probability of occupancy 𝑓(𝜖) (solid line) and the density of 

states 𝑔(𝜖) (dashed line) for a disordered interacting system with strong localization.The 

minimum of the density of states, 𝑔0, depends on T and is approximately constant in the 

range of variation  of 𝑓(𝜖). 

 

 

At very low temperatures, the range of variation of 𝑓(𝜖) is very small, so the portion of 

density of states that lies in that range is almost constant. Again, we call that value 𝑔0, considering 

that now it depends on the temperature. In a previous work, some of the authors determined that 

there is a direct linear dependency between 𝑔0 and T for two-dimensional systems [3]. From this 

result and, by using the same argument that in the non-interacting case, we obtain that the 

dependence of the average energy on T is, in principle, of cubic order 

 

                                                                          〈𝐸〉 ∝ 𝑇3                                                                        (7) 

 

due to the extra dependency on T introduced by 𝑔0. 

In this deduction we considered that transitions only occur in the inner zone of the gap. 

However, there are many other transitions that constantly occur back and forth, consisting of pairs 

whose difference between site energies is large [5]. These pairs are placed at very close distances 

so, as we argued before, the excitonic term (electron-hole) of the form 1/r in Eq. (3) compensates 

the energy difference, where r is the separation distance of the pair. These configurations are 

called weak transitions or soft dipoles [5,6].  

We can calculate the contribution to the total energy of the system due to these soft 

transitions as a function of T. Firstly, let us suppose a system with only two sites, one occupied 

and one empty. We have two possible configurations, labeled with energies 𝜖1 and 𝜖2. Do not 

confuse the nomenclature we use to designate the site energies of the system. If we set to zero the 

energy of the ground level, we can rewrite them as 0 and 𝜖, respectively. If we suppose that the 

system is in equilibrium, the average energy is  

 

〈𝐸〉 =
𝜖 exp(−𝜖/𝑘B𝑇)

1 + exp(−𝜖/𝑘B𝑇)
= 𝜖𝑓d(𝜖) 

 

Function 𝑓d(𝜖) is again a FDD at T. In this expression, and in the following ones, subscript 

“d” in the magnitudes refers to dipoles. In a many-particle system, dipole-dipole interaction is 

much smaller than the interaction between particle pairs [5], so it is a good approximation to 
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consider soft dipoles as isolated entities. Therefore, the contribution to the total energy of the 

system, with respect to the fundamental level, due to these soft dipoles can be written as 

 
〈𝐸d〉 − 𝐸0

𝑁
= ∫ 𝜖𝑔d(𝜖)𝑓d(𝜖)d𝜖

∞

−∞

 

 

In this expression, 𝑔d(𝜖) is the density of free dipoles per volume unit. As in the deduction 

for the non-interacting case, we may consider 𝑔d(𝜖)  as a constant in the range of low 

temperatures, due to the isolation approximation (no interaction between dipoles). As a result, and 

by virtue of Eq. (6) 

 

〈𝐸d〉 ∝ 𝑇2 
 

Under the considered approximations, the dependence of the total energy on T is 

dominantly of quadratic order in the range of very low temperatures. 

The data obtained from our simulations are consistent with this result, and reveal the 

importance of the soft dipoles at very low temperatures. The calculation of the equilibrium energy, 

with respect to the ground level, for very low values of T, is carried out using the lowest energy 

levels of the system  

 

                                            〈𝐸〉 − 〈𝐸0〉 =
1

𝑍
∑(𝐸𝑖 − 𝐸0) exp [−

(𝐸𝑖 − 𝐸0)

𝑘B𝑇
]

𝑛n

𝑖=1

                                    (8) 

 

The sum extends to 𝑛n, the maximum number of low energy levels calculated, using a 

specific configuration algorithm, such as that described in [8,9]. 𝐸𝑖 is the energy of each level, 𝐸0 

is the energy of the ground level and Z is the canonical partition function. The results obtained 

from our simulations are shown in Figure 3. The average energy per particle in equilibrium respect 

to the ground level is represented against T, using a double logarithmic scale. The data has been 

obtained for systems of sizes 500 (black squares) and 1000 (red dots), with a number of samples in 

the order of 1000, for each temperature. The maximum number of levels, 𝑛n, is in the order of 

10000. Data errors are determined by the standard deviation of the energy of the samples, and are 

in the order of the spot size. Temperature ranges between 0.001 and 0.011. From the figure, it is 

depicted that the values of the energies in equilibrium are practically independent of size. From the 

linear fit of the data corresponding to N = 1000 we obtain a slope of 2.06 ± 0.04, a fact that 

verifies the quadratic dependence of the energy at very low temperatures.  

 

 
Fig. 3. Total energy per particle with respect to the ground level versus T, in a double 

logarithmic scale. The results are presented for samples of size 500 (black squares) and 

1000 (red dots). The linear fit of the data for N = 1000 gives a value of 2.06 ± 0.04 for 

the slope of the line within the considered range of temperatures. 
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However, our simulations using the lowest energy configurations cannot cover a wide 

range of temperatures. As the sample size increases, the number of energy levels grows 

exponentially. Similarly, this number increases exponentially as a function of energy [5,6]. The 

discrete sum in Eq. (8) converges to the real infinite sum only at very low temperatures, where the 

Boltzmann function is narrower and the first energy levels dominate. The criterion chosen to 

determine the maximum temperature for this numerical problem is to consider that the Boltzmann 

factor of the last valid energy configuration, exp[−(𝐸𝑛n
− 𝐸0)/𝑘B𝑇], is less than a certain very 

small value. Qualitatively, we choose as a limit that the argument of the exponential has a value -

10, making the Boltzmann factor to be 0.0025. Thus the maximum temperature is 𝑇max =

(𝐸𝑛n
− 𝐸0)/10. For a typical system of size 1000 with 10000 low energy levels calculated, we 

obtain 𝐸𝑛n
− 𝐸0 = 0.08 and, thus, 𝑇max = 0.013. One way to test the usefulness of this approach 

is to reduce the number of maximum levels 𝑛n in half and redo the calculation of the total energy 

of equilibrium. In our case, the divergence begins to be observed from a temperature T = 0.012, so 

the cut-off criterion selected in the exponential function is acceptable. 

Nevertheless, it is possible to complete the curve (〈𝐸〉 − 〈𝐸0〉)/𝑁  versus T for higher 

temperatures using Monte Carlo simulations. For this purpose we employ Tsigankov’s et al. 

algorithm [10]. If T is high enough the system will quickly reach the equilibrium. In Figure 4 we 

represent together the values of the equilibrium energy per particle versus T, relative to the ground 

level, for both methods (adding data of Figure 3). A logarithmic scale was used on both axes. Data 

for sizes 500 (circles) and 1000 (triangles) are shown in the same plot. The open symbols 

correspond to simulations made by using the lowest energy configurations, this time employing 

100000 calculated levels. The filled symbols represent the data obtained by Monte Carlo 

simulations. Errors of this final data set are determined from the standard deviation of the average 

equilibrium energy of each sample. We checked that this error is larger than the fluctuation 

associated to the equilibrium energy of each individual sample, so it can be considered as 

dominant. Still, it is the order of the size of the plotted point. 

As shown in Figure 4, data obtained by means of the two methods collapse into a single 

curve for the whole temperature range under consideration. Thereby, a unique linear fit for all 

points is feasible. As we increase T, the cubic dependence of the energy starts to gain significance, 

as presented in Eq. (7), which only took into account the internal transitions in the gap. A linear fit 

for the whole range of temperature of the type 

 

                                                             
〈𝐸〉 − 𝐸0

𝑁
= 𝛼𝑇2 + 𝛽𝑇3                                                             (9) 

 

is performed. 

From our data we obtain 𝛼 = 0.31 ± 0.05 and 𝛽 = 1.30 ± 0.04. However, the data fit 

better to a dependence of the type  

 

                                                                    
〈𝐸〉 − 𝐸0

𝑁
= 𝛾𝑇𝛿                                                                     (10) 

 

From the fit, a value of 𝛿 = 2.3 ± 0.2 is obtained. The contrast between both expressions 

was performed by comparing the value of the reduced chi-squared value, 𝜒2, since both cases have 

the same degrees of freedom. The value of this coefficient is lower for the fit corresponding to Eq. 

(10) than for Eq. (9). For this reason, the first one is shown in Figure 4 (solid line) in spite of not 

having found a theoretical justification of it. 
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Fig. 4. Energy per particle relative to the ground level versus T, in double logarithmic 

scale. The calculated sizes are N = 500 (circles) y 1000 (triangles). The open symbols 

represent the data obtained from simulations using the lowest energy configurations. Solid 

symbols, those obtained by means of equilibrium Monte Carlo simulations. The straight  

line represents the fit given by Eq. (10). 

 

 

Many-particle density of states 

Another method to verify the dependence of the equilibrium energy on temperature 

requires the analysis of MDOS, which we call 𝐺(𝐸). We will suppose that E is the total energy of 

the system relative to the ground level. We can define the magnitude 𝐺(𝐸)Δ𝐸 as the number of 

states per area unit whose total energy lie in the range [𝐸, 𝐸 + Δ𝐸].  
By using the lowest energy configurations found we can simply determine the form of 

𝐺(𝐸) by making a histogram with the energies of these states. The representation of the histogram 

is shown in Figure 5 for a system of size 2000. The presence of the solid line will be justified 

below. This plot suggests an exponential dependence for the data. In fact, it can be determined that 

the dependence of 𝐺(𝐸) with the total energy of the system presents the shape of a stretched 

exponential 

 

                                                                 𝐺(𝐸) = 𝑘 exp(𝑐𝐸𝛾)                                                            (11)  
 

where the exponent 𝛾 takes a value less than 1. Parameters k and c are both constant. To verify this 

dependence, let us return to Figure 5. The main objetive is to determine the value of 𝛾. We extract 

data pairs from the histogram having as abscissa the central energy value of each box and as 

ordinate its corresponding height in the histogram. We will name 𝐺̃(𝐸)  to the magnitude 

corresponding to the ordinate. The dependence of this new variable with E is the same as that of 

the function 𝐺(𝐸) given by the Eq. (11), so we can determine 𝛾 from the analysis of 𝐺̃(𝐸). If we 

carry out the fit of the above expression to the data pairs 𝐸, 𝐺̃(𝐸) we obtain a value 𝛾 = 0.53 ±
0.03. The theoretical line given by the exponential fit is represented over the histogram in Figure 

5.  

In order to estimate the error of 𝛾 we have assumed that the histogram data correspond to a 

Poisson distribution. The error in each box is thus √𝑛, where n is the number of event per box. The 

value of the exponent 𝛾 will be employed to give an alternative expression of the dependence of 

the average energy of the system on T, as discussed below. 
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Fig. 5. Number of system states histogram in terms of the total energy versus the ground 

level, for a system of size 2000. The width of each box is .001. The solid line represents the 

fit of the expression given by Eq. (8) to the data extracted from the histogram. 

  

 

We can develop an alternative calculation of the average energy of the system by 

employing the information given by the MDOS. If we use equilibrium statistical properties, the 

average total energy of the system is 

 

                                                    〈𝐸〉 =
∫ 𝐸𝐺(𝐸) exp (−

𝐸
𝑘B𝑇

) d𝐸
∞

−∞

∫ 𝐺(𝐸) exp (−
𝐸

𝑘B𝑇
) d𝐸

∞

−∞

                                                (12) 

 

with 𝐺(𝐸) given by Eq. (11). Again, we call E to the difference between the total energy of the 

system and the ground level. At low temperatures, and when the system is large enough, the 

product of multiplying functions 𝐺(𝐸) and exp(−𝐸/𝑘B𝑇) is a narrow enough function to consider 

only its maximum as relevant [5,6]. To obtain this maximum value, we derive the integrand of Eq. 

(12), exp(𝐸𝛾 − 𝛽𝐸), where we have performed the change 𝛽 = 1/𝑘B𝑇 

 

𝛾𝐸𝛾−1 − 𝛽 = 0 → 𝐸 = (
𝛽

𝛾
)

1
𝛾−1

 

 

From this result we obtain that the dependence of the average total energy on temperature 

has the form 

〈𝐸〉 ∝ 𝑇
1

𝛾−1 
  

From the fit we obtain the value  𝛾 = 0.53 ± 0.03 , so the total energy follows the 

expression 

 

〈𝐸〉 ∝ 𝑇2.13±0.14 
 

This result is consistent with that obtained from Eq. (10), which strengthens the calculus 

of the dependence of the total energy of the system on T.  

 

Absorbed and emitted power 

In equilibrium, the total power absorbed by the system at a given temperature is equal to 

the total emitted power.  

The former one is associated with the electronic transitions that increase the total energy 

of the system, yielded by the phonons at temperature T. By virtue of the electron-phonon 
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interaction, a phonon is destroyed in this process. The latter one has to do with transitions that 

reduce the total energy, resulting in the creation of a new phonon. The equality of these quantities 

in equilibrium is evident from our simulations. Again, we have used the configuration and Monte 

Carlo algorithms together to cover a wide range of temperatures. 

Regarding the configuration algorithm, that employs the lowest energy configurations, 

first we evaluate every transition probability per time unit between calculated configurations. We 

consider only the transitions that increase energy, so we use the standard expression for the 

transition rate Γ𝛼𝛽 between two configurations in Coulomb glasses [5,6] 

 

Γ𝛼𝛽 = 𝜏0
−1 exp (

−2𝑟𝑖𝑗

𝜉
) exp (

−Δ𝐸𝛼𝛽

𝑘B𝑇
) 

 

The treatment for transitions that reduce the energy is similar. The absorbed power is thus 

calculated as [5] 

 

𝑃(𝑇) = ∑
exp [−

𝐸𝛼
𝑘B𝑇]

𝑍
𝛼,𝛽

exp [−2𝑟𝛼,𝛽 −
(𝐸𝛽 − 𝐸𝛼)

𝑘B𝑇
] (𝐸𝛽 − 𝐸𝛼) 

 

In this expression, the first exponential term is the probability of finding the system in 

configuration 𝛼 , while the second is the transition probability per time unit between the 

configurations 𝛼  and 𝛽 . The sum extends over each pair of configurations whose transition 

increases the energy. For the calculation, a number of samples of the order of 1000 has been used 

at each temperature. The error in the data is determined from the standard deviation of the 

considered samples. 

For the Monte Carlo algorithm, we calculate the increasing and decreasing averaged total 

energy of the system separately, as a function of time. At equilibrium, the representation of these 

two quantities corresponds to a straight line. The slope of the plots has units of energy per time 

unit, and represents the value of the absorbed and emitted power, respectively, at each 

temperature. The error in the data is calculated again from the standard deviation associated with 

the samples. 

Figure 6 shows in the same plot the data obtained by both methods. We represent only the 

absorbed power per particle P, dependent on temperature, in a double logarithmic scale, for sizes 

500 (circles), 1000 (triangles) and 2000 (squares). The open symbols are related to the data 

obtained by the configuration algorithm and, the solid ones, by the Monte Carlo algorithm.  

For convenience, we have added the representation of the energy as a function of 

temperature that was presented in Figure 4. The good linear behavior of the data suggests a 

dependence of the type  

 

𝑃 ∝ 𝑇𝜆 
 

From the slope of the line associated with the curve of the absorbed power we determine a 

value of 𝜆 = 2.15. This exponent is very similar to that obtained for the dependence of the total 

energy on temperature, through Eq. (10). The similarity between these two slopes is difficult to 

explain in a clear way. However, one can assume that, as in the case of energy, the largest 

contribution to the absorbed and emitted power comes from the soft dipoles. In our numerical 

calculations we have found that over 80% of the value of the power comes from these soft dipoles, 

regardless of temperature. To determine this percentage, we analyzed the total increasing and 

decreasing energies of the system, and compared these values with the same energies restricted 

only to the soft transitions. The chosen criterion for determining whether a pair of configurations 

forms a soft dipole involves selecting a cutoff in distances. Operationally, we choose that the 

distance between sites involving the soft transition, 𝑟𝑖𝑗 , is less than 1. In our systems, the 

maximum difference in site energies is of the order of 0.1, thus the excitonic factor 1/𝑟𝑖𝑗 
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compensates the difference in one order of magnitude by virtue of Eq. (3). The criterion is enough 

to include the majority of the dipoles in the calculation.   

 

 
Fig. 6. Absorbed power per particle versus T, in double logarithmic scale. The calculated 

sizes are N = 500 (circles), 1000 (triangles) y 2000 (squares). The open symbols represent 

data obtained from simulations with the lowest energy configurations. The filled symbols 

are data obtained by equilibrium Monte Carlo simulations. The straight line represents  

     the linear fit of the data. The graphical representation of Fig. 4 has been added. 

 

 

4. Conclussions 
 

In the present article we complete the numerical study of the one-particle equilibrium 

properties of glassy chalcogenides previously presented by some of the authors, this time focusing 

on the analysis of the many-particle properties. Concretely, the work is devoted to the study of the 

total energy of the system, the many-particle density of states and the absorbed and emitted power. 

To perform the numerical simulations, we employed a double algorithm approach in order to cover 

a wide range of temperatures. Apart of giving theoretical expressions for the dependence of the 

magnitudes on the temperature, we revealed an important information regarding the intrinsic 

dynamics of the Coulomb glass model at very low temperatures: the effects of the soft dipoles are 

dominant. The dynamical part of the study allowed us to state, by following the equilibrium 

dynamics of the energy and the power, that the forth and back transitions which characterize the 

soft dipoles dominate the total energy value at very low temperatures, and also provide over the 

80% of the emitted and absorbed power of the system. This key fact becomes essential to 

understand the complicated dynamics of Coulomb glasses. Due to this fact, some of the authors 

are currently working on developing clustering numerical algorithms to treat the soft dipoles as a 

set of internal configurations. In such a way, it is possible to statistically estimate the effective 

time that the system spends in each particular set, and consider it as a black box. 
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