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1. Introduction

A topological index is a real number related to a structural graph of a molecule. It does not depend
on the labeling or pictorial representation of a graph. In recent years there has been considerable
interest in the general problem of determining topological indices of nanotubes, nanotori and
fullerenes. It has been established, for example, that the Wiener and hyper-Wiener indices of
polyhex nanotubes and tori are computable from the molecular graph of these structures.
Accordingly, some of the interest has been focused on computing topological indices of these
nanostructures. Let G be an undirected connected graph without loops or multiple edges, with the
vertex set V(G) and the edge set £(G). The distance between two vertices x and y is denoted by
d(x,y). The Winer index W(G) of G, which is the oldest topological index, is a distance based
topological index and is defined as the sum of distances between all vertices of the graph:

W(G) = Z{M,V}QV(G)d(u,v).

There are some other distance based topological indices. The Hyper Wiener index WW(G) of G is
defined as

1 1 ,
WW(G) = EW(G) + ZZW@@ d(u,v)* .

Haruo Hosoya ' introduced a distance-based polynomial, which he called the Wiener polynomial,
related to each connected graph G as:

H(G,y)=) d(G,k)y"*

k>0

where d(G,k) is the number of pair vertices of G that are at distance k of each other. However,
today it is called the Hosoya polynomial®. It is easy to see that it is equal to
HGy= Dy

{u,vicV(G)
Hosoya polynomial has many interesting properties such as’

the degree of this polynomial equals the diameter of graph G,
the coefficient of y in this polynomial equals the number of edges of G,
the first derivative of this polynomial at y=1 is equal to the Wiener index,

the second derivative of 4 yH (G, y) at y=1 is equal to the hyper-Wiener index.
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The diameter d of a graph is the largest topological distance between any two vertices, i.e. the
largest d(u,v) value in the distance matrix. Balaban and co-authors introduced the reverse Wiener
index’. They showed that starting from the distance matrix and subtracting from d each d(u,v)
value, one obtains a new symmetrical matrix which, like the distance matrix, has zeroes on the
main diagonal and, in addition, at least a pair of zeroes off the main diagonal corresponding to the
diameter in the distance matrix. They obtained a general formula for reverse Wiener index of a
graph G with N vertices and the diameter d as (see [5])

A(G) = %N(N ~1d-W(G).

Among the modifications of the Wiener index the Schultz index (Molecular Topological Index)
that proposed by Schultz in’, appears to be one of the most studied topological indices. It is
defined as

SG) =~ Y (deg(u)+deg()d(u.v)

{uvicV(G)

where deg(u) is the degree of the vertex u, i.e. the number of the vertices joining to the vertex u. In
addition to the chemical applications, the Schultz index attracted some attention after it was
discovered that in the case of trees it is closely related to the Wiener index’. Klavzar and Gutman
in [8] defined the modified Schultz index as

§'(G)=~ Y (deg(u)deg(v))d(u,v).

{u,viclV(G)
Let u and v be two adjacent vertices of the graph G and e=uv be the edge between them.The
Balaban index of a molecular graph G was introduced by Balaban in 1982 as one of less

degenerated topological indices. It calculate the average distance sum connectivity index
according to the equation

_ & -0.5
@)= 52 [0

where Q is the number of edges in G and u is the cyclomatic number of G and
dw)=2, ,dwv).

The Harary index, H = H(G), of a molecular graph G is based on the concept of reciprocal distance
and is defined

1
H(G)=
{u,v}zcr:/(c) d(u,v)

u#v
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in parallel to the Wiener index”", as the half-sum of the off-diagonal elements of the reciprocal
molecular distance matrix. The reciprocal distance matrix can be simply obtained by replacing all
off-diagonal elements of the distance matrix by their reciprocals. It should be noted that diagonal
elements of the reciprocal matrix are all equal to zero by definition. This matrix was first
mentioned by Balaban ef al.'?

FullereneCy is a spherically 7 -conjugated all-carbon molecule'® which can accept six electrons
successively in solution. Thus, it is considered as one of the most attractive units for incorporation
as a functional core in dendrimers. Actually, a Cg cage has been used as a core as well as branches
of the dendrimers. In all the dendrimers having a fullerene cage as a core reported so far, the
dendrons are connected to the Cq cages by a formal [2+1] cycloaddition like pattern A shown in
Figure 1, including carbon, nitrogen, and iridium elements directly attached to the Cqy cage. On the
other hand, Cg-based dendrimers with the addition pattern B are quite intriguing because the
electronic and chemical properties of the central C4 cage should be dramatically changed by
abstraction of the proton directly attached to the Cq cage'. Synthesis and properties of novel
fullerene derivatives having dendrimer units G,CgH, n=1-4 and the fullerenyl anions G,Cgp, n=1-4
generated therefrom discussed in [16]

In this work compute several topological indices of the first C4p-based dendrimers having various
generations of dendrons with the addition pattern B.

Bl Den = Dendron —
Fig. 1.

Programs for computing some distance-based topological indices and polynomials of any
graph

In this section we compute distance-matrix of arbitrary graph G. Iranmanesh and his team wrote
GAP programs for computing the PI and Szeged index of any graph. We continue this work and
write a MATHEMATICA program to compute distance matrix of any graph which we can easily
add a few simple lines to our program to compute some topological indices of graphs. For this
purpose, the following algorithm is presented:

Let G be a graph. First we do numbering the vertices of the graph G, then for every vertex i, the set
of vertices that their distance to this vertex are equal to t is denoted by D(i)(t). If we denote the set
of all adjacent vertices of a vertex i in the graph, with f(i), then we have '’

D(@i)(t+1)= jeu%m(f ()= DO DE)(E-1)), =1.

Using this fact we can write a simple MATHEMATICA program to generating the distance matrix
of any graph. Let |V(G)|=m, then after numbering the vertices and defining the adjacent vertices of
any vertex by a function f, we can write this program

Diam=Table[dia[i],{i,1,m}];
For[i=1,i<m,
u={i};
X[1,1]=Ti];
u=Union[u,x[i,1]];
s=1;
t=1;
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While[1< s<m

X[L,tH1]={};

For[k=1,k< Length[x[i,t]],
Com=Complement[f[x[1,t][[k]]],u];
For[l=1,I< Length[Com],

AppendTo[x[i,t+1],Com[[1]]];
1++];
k++];

u=Union[u,x[i,t+1]];

Hx[i,t+1]=={},s=0,s=1];

HIx[i,t+1]0{} ,dia[i]=t];

t=t+1;

I

i++];
Now we are ready to write a program to generate the distance matrix of any graph.

Dis=Table[d[i,j],{i,1,m},{j,1,m}];
For[i=1, i<m,
For[j=1,j<m,
For[k=1,k< dia]i],
IfTil),d[1,j]=0];
IflMemberQ[x[i,k].j],d[i,j]=k];
k++];
Tl
i++];
Now we can add some lines to the above program to compute many topological polynomials and
related topological indices of any graph. Such as

hly [:=1/2*Sum[Sum[y~d[i,j],{i,1,m}],{j,1,m}];
S[y_]:=1/2*Sum[Sum][(Length[f[i]]+Length[f]j]])*y"d[i,j],{i,1,m}],{j,1,m}];
M [y_]:=1/2*Sum[Sum[(Length[{[i]]*Length[f[j]])*y"d[i,j],{i,1,m}],{j,1,m}];
ply_I=y*hly];

h[y]//Simplify

S[y]/Simplify

M[y]/Simplify

W=Function[y,h'[y]][1]

WW=1/2*Function[y,p"[y]][1]

RW=1/2*(m)(m-1)*Max[Diam]-W

Sch=Function[y,S'[y]][1]

ModSch= Function[y,M'[y]][1]

Q=CoefficientList[h[y],y][[2]]

where h[y], S[y], M[y], W, WW, RW, Max[Diam], Sch, ModSch and Q are the Hosoya
polynomial, Schultz polynomial, Modified Schultz polynomial, Wiener index, hyper-Wiener
index, reverse-Wiener index, the diameter, Schultz, Modified Schultz indices and number of edges
of graph G.

Moreover we can add simple below programs for computing the Balaban index, Harray index,
Connectivity index:

J=0;
H=0;
R=0;
dd[i_J=Sum[d[i], j,1,m}];
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For[i=1,i< m,
For[j=1,j<m,
If[d[i,j]01,J=J+(dd[i]*dd[j])*-0.5];
Ifli<j,H=H+1/d[i,j]];
If[d[i,j]01, R=R+(Length[f[i]]*Length[{[j]])"-0.5];
Il
i++];
J=(Q)/(Q-m+2)*J(*this is the balaban index of graph*)
H//N(*this is the Harray index of graph*)
R=1/2*R(*this is the connectivity index*)

Some distance-based topological indices and counting polynomials of fullerene
In this section, using the programs in the previous section, we compute some topological indices
and polynomials of fullerene as follows.

Fig. 2. Numbering for [60-1,] fullerene in 2D and 3D format (pictures taken from [18])

Firstly we number the fullerene vertices as shown in the Figure 2, and then we can write the
following MATHEMATICA program

A=Table[a[i],{i,1,60}];
a[6]=1;
For[i=1,i<5,
If[EvenQi],a[i]=5%i/2+7,a[i]=5*(i-1)/2+9];
i++];
For[i=7,i<21,
a[i]=Which[i(7,21,i721,7,Mod[i,5]74,2*(i-4)/5-1,Mod][1,5]72,2*(i-2)/5-2,Mod[1,5]13,6 *(i-
3)/5+18,Mod[1,5]010,6*1/5+14,Mod[i,5]11,6*(i-1)/5+16];
i++];
For[i=22,i<39,
a[i]=Which[i[122,39,17139,22,Mod[i,6]15,5*(i-5)/6+27,Mod[1,6 ] 11,5*(i-
1)/6+23,Mod[1,6](13,5*(i-3)/6+25,Mod[i,6]10,5*1/6-12,Mod][i,6]2,5*(i-2)/6-10,Mod[i,6 ] 14,5*(i-
4)/6-91;
i++];
For[i=40,i<54,
a[i]=Which[i[740,54,i154,40,Mod[1,5]==1,2*(i-6)/5+42,Mod[1,5]74,2*(i-
4)/5+41,Mod[i,5]12,6*(i-2)/5-25,Mod[1,5]70,6*i/5-27,Mod[1,5]3,6 *(i-3)/5-23];
i+];
For[i=55,i<60,
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a[i]=Which[i[155,60,i(160,55,Mod[i,2](10,5*i/2-99,Mod[i,2]11,5*(i-1)/2-96];
i++];
f[ii]:=]\’Nhich[iD1,{2,6,a[i] },10160,{59,51,a[1]},2<i<59,{i-1,i+1,a[i]} ];
Now we put m=60 in the programs of previous section, and run these programs. We summarized

the outputs in the tables 1, 2.

Table 1. Counting polynomials of fullerene

Hosoya polynomial 30(1+3y+6y*+8y +10y'+10y’+10y°+8y '+3y"+y”)
Schultz polynomial 180(1+3y+6y"+8y +10y*+10y"+10y*+8y ' +3y"+y”)
Modified Schultz polynomial 270(1+3y+6y°+8y’+10y*+10y"+10y°+8y +3y*+y’)

Table 2. Topological indices of fullerene.

Wiener Hyper- Reverse- | Schultz Modified | Balaban | Harray Connectivity
Wiener Wiener Schultz

8340 27180 7590 50040 75060 1.82104 | 493.869 | 30

Some distance-based topological indices and counting polynomials of G,Cg

As another example, in this section, we compute some-topological indices and counting
polynomials of fullerenyl anions having dendrimer units by use of our programs.

Note that in all the dendrimers having a fullerene cage as a core, the dendrons are connected to the
Ceo cages and it is easy to see that the number of all vertices of G,Cq is 68+16(2"-1).

First we do numbering all of vertices of G,Cq. For this purpose we number the vertices of Cg
cage as the same of previous section from 1 to 60 and since that the dendrimer units joint to the
Ceo cage at the vertex number 1, we label this vertex with 68+16(2"-1). Now we continue the
numbering from 61 to 67 as shown in the figure 3. Remaining vertices are separated in eight types
A, B, C, D, E, F, G, and H. Note that the number of vertices of any above eight type is 2(2"-1).We
start with vertices of type A and label them, with numbers 68-67+2(2"-1), of course 68-66+2" for
right hand and 67+2"-67+2(2"-1) for left hand vertices, and continue this numbering method
respectively for vertices of other types as shown in the figure 5.
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Fig. 4.Vertices of type A, B, C, D, E, F, G and H in the left and right hand dendrimer units.

Fig. 5. G,Cgy and numbering of atoms.

Now we are ready to define the function fi] as follows.

A=Table[a[i],{i,1,60}];
a[6]=1;
For[i=1, i<5,

If[EvenQ[i],a[i]=5*1/2+7,a[i]=5*(i-1)/2+9];

i++];
For[i=7, i<21,

a[i]=Which[i(J7, 21, iC21, 7, Mod[i,5]04, 2*(i-4)/5-1, Mod[i,5]02, 2*(i-2)/5-2, Mod[i,5]3,
6*(i-3)/5+18, Mod[1,5]00, 6*i/5+14, Mod[i,5]C1, 6*(i-1)/5+16];

i++];
For[i=22, <39,

a[i]J=Which[i(22, 39, 1139, 22, Mod[1,6]05, 5*(i-5)/6+27, Mod[i,6]U1, 5*(i-1)/6+23,
Mod[1,6]3, 5*(i-3)/6+25, Mod[1,6]10, 5*i/6-12, Mod[i,6]12, 5*(i-2)/6-10, Mod[i,6]4, 5*(i-4)/6-
91;

] i++];

For[i=40, i<54,

a[i]=Which[i[40, 54, i154, 40, Mod[i,5]= =1, 2*(i-6)/5+42, Mod[i,5](04, 2*(i-4)/5+41,
Mod[i,5]02, 6*(i-2)/5-25, Mod[i,5]00, 6*1/5-27, Mod[i,5]03, 6*(i-3)/5-23];

i+
For[i=55, <60,

a[i]J=Which[iI55, 60, i1J60, 55, Mod[1,2]J0, 5*i/2-99, Mod[1,2]01, 5*(i-1)/2-96];
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i++];
B=Table[bl[i],{i,68,67+2*(2"n-1)}];
For[i=68, i<67+2*(2"n-1),
b[i]=Which[i[168, 63, i(167+2"n, 67, n>2&&69<i<66+2 n&&Mod[i,2]10, 67+12*(2”n-1)+(i-
68)/2, n22&&69<i<66+2 " n&&Mod[i,2] 11, 67+8*(2 n-1)+(1-67)/2,
n>2&&68+2 n<i<67+2* (2 n-1)&&Mod[1,2]710, 67+9*(2"n-1)+(i-(66+2"n))/2,
n>2&&68+2/ n<i<67+2*(2 n-1)&&Mod[1,2] 11, 67+13*(2"n-1)+(i-(67+2"n))/2];

i++];
fli_]:==Which[i[168+16*(2"n-1), {1,61},i11, {2,6,a[i], 68+16%*(2"n-1), i[160,{59,51,a[i]}, 2<i<59,
{i-1,i+1,a[i]}, 1161, {68+16*(2"n-1), 62, 62<i<63,{i-1,i+1,i+5}, 64<i<66,{i-
1,i+1},i067,{62,66,68+2"n-1},68<i<67+2*(2"n-1),{b[i],i+2*(2"n-1)}, 68+2*(2"n-1)<i<
67+4*(2"n-1)[|68+6*(2"n-1)<i< 67+8*(2 n-1),{i-2*(2"n-1),i+2*(2"n-1)},68+4*(2"n-1)<i<
67+6*(2"n-1),{i-2*(2"n-1),i+2*(2"n-1),i+10*(2"n-1) } ,n>2& & 68+8*(2"n-1)<i< 67+9*(2"n-1)-
27(n-1),{i-2*(2"n-1), i+2*(2"n-1),2*(i-67-8*(2"n-1))+67},68+9*(2"n-1)-2"(n-1)<i< 67+9*(2 n-
1),{i-2*(2"n-1), i+2*(2"n-1), n>2&&68+9*(2"n-1)<i< 67+10*(2"n-1)-2"(n-1), {i-2*(2"n-
1),i+2*(2"n-1),2*(i-67-9*(2"n-1))+66+2"n},68+10*(2"n-1)-2(n-1)<i< 67+10*(2 n-
1)||68+10*(2"n-1)<i<67+12*(2"n-1) ,{i-2*(2"n-1),i+2*(2"n-1)} ,n>2&&68+12*(2"n-1)<i<
67+13*(2”n-1)-2"(n-1),{i-2*(2”n-1),i+2*(2"n-1),2*(i-67-12*(2"n-1))+68, 68+13*(2"n-1)-2"(n-
1)<i< 67+13*(2"n-1),{i-2*(2"n-1),i+2*(2"n-1), n>2&&68+13*(2"n-1)<i< 67+14*(2"n-1)-2"(n-
1),{i-2*(2"n-1),i+2*(2”n-1),2*(i-67-13*(2"n-1))+67+2"n},68+14*(2"n-1)-2"(n-
1)<i<67+14*(2 n-1),{i-2*(2”n-1), i+2*(2"n-1) },68+14*(2"n-1)<i<67+16* (2 n-1),{i-2*(2"n-1),i-
10*¥(2"n-1)}1;

Now if we put m=68+16(2"-1) in our programs then we have following results that summarized in
tables 3-6.

Table3. Hosoya polynomial.

n=1 | 42+117y+217y*+283y"+347y " +361y +384y°+351y+221y*+177y"+
166y'+182y' '+181y"*+158y"*+130y"*+101y"*+66y'*+32y' "+10y'*+2y "’
n=2 | 58+153y+265y°+331y"+393y*+413y°+442y°+419y"+295y*+253y"+
246y'°+282y''+309y'2+306y*+3 12y *+33 7y +362y ' *+368y' +338y'*+
294y"%+240y*"+172y*'+96y**+36y>+8y**

n=3 | 90+225y+361y*+427y +485y* 517y +558y°+555y +435y*+397y +
398y'"+450y' +501y'*+506y"*+516y' +553y'*+626y'*+704y' +722y "4+
750y"7+808y**+868y*' +880y**+796y " +696y*+592y* +472y*+352y* '+
248y"%+184y*+160y°"+160y°'+128y**+64y>>+16y>*

n=4 | 154+369 y+553 y*+619 y*+669 y*+725 y'+790 y*+827 y'+715y*+685y’
+702 y''+786 y''+885 y'*+890 y'"*+908 y'*+ 969 y'*+1090 y'°+1248y"’
+1298 y'*+1342 y"*+1432 y**+1604 y*'+1776 y*+1772 y*+1861y**+
1952 y*+2120 y**+2240 y*7+2120 y**+1928 y*+1728 y**+1520 y*' +
1280 y**+976 y**+800 y**+768 y**+832 y**+896 y*'+832 y**+704 y* +
640 y**+640 y*'+512 y*?+256 y*+64 y*
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Table 4. Schultz polynomial.

n=1

243+668y+1258y™+1647y*+2036y'+2120y°+2240y°+2011y"+1219y*+925y"+
870y'+941y''+924y*+808y " +665y'*+511y*+332y'+160y ' "+50y *+10y "

n=2

306+836y+1474y’+1867y +2248y +2356y°+2516y°+2327y +1555y"*+1296y°+
1254y'°+1433y"' ' +1544y'2+1560y*+1617y"*+1743y"*+1864y'*+1860y' "+
1698y"*+1474y"+1188y**+832y*'+448y**+164y*+36y**

n=3

450+1172y+1906y°+2307 y*+2672 y*+2828 y'+3068 y*+2943 y'+2195y* +
1952 y*+1942 y'°+2225 y''4+2424 y'2+2472 y+2545 y'*+2767 y*+3160 y'° +
3468 y'7+3602 y'*+3794 y'?+4084 y**+4376 y*'+4344 y+3940 y*+3444y*+
2888y7+2288 y**+1632 y*7+1096 y**+808 y*+704 y**+672 y*'+512 y**+

256 v+ 64 y**

n=4

738+1844y+2770y*+3187y’+3520y*+3772y +4172y"+4175y'+3475y"*+

3264 y*+3318y'°+3809y''+4152y'*+4232y " +433 7y *+4655y"*+ 5368y '+
5964y'7+6226y'%+6482y" +6996y*'+7928y*'+8552y**+8708y "+ 9044y**+
9704y>+10624y**+10896y*"+10248y**+9288 y*+8208 y**+7168 y*' +5760y™
+4368y>*+3600y**+3456y>°+3480y**+3968 y*'+3584 y**+3072 y*° + 2816
y*4+2688 y*'+2048 y*+1024 y*+256 y*

Table5. Modified Schultz polynomial

n=1

334+963y+1835y°+2414y"+3003y"+3120y"+3274y"+2896y'+1684y"+1269y’+
1120y'%+1193y' ' +1151y"*+1006y"*+826y'‘+624y'*+402y'*+192y' +60y'*+12y"°

n=2

418+1155y+2081y°+2666y"+3243y*+3396y°+3598y +3260y’+2066y"+1665y "+
1588y'+1801y'!+1923y'*+1974y"*+2066y'*+2224y'*+2354y'°+2300y' +2092y'®
+1804y'*+1428y**+980y*'+512y**+184y>+40y™*

n=3

586+1539 y+2573 y*+3170 y*+3723 y*+3948 y’+4238 y*+3964 y'+2798 y*+ 2401y’
+2388 y'*4+2721 y''+2931 y'*+3014 y"*+3130y'*+ 3464 y'*+3938 y'®+ 4268 y'7+
4484 y'*+4748 y"+5124 y**+5428 y*'+5288 y*+4800 y=+ 4168 y**+ 3464 y*+
2696 y**+1856 y*'+1216 y**+880 y*+768 y**+704 y*'+512 y*'+256 y*'+64 y*

n=4

922 +2307y+3557y*+4178y +4683 y*+5052y°+5518y°+5372y ' +4262 y*+3873 y’
+3988y''+4545y''+4899y'*+5030y "+ 5146y +567 y'+6514y'+7132y" "+
7476y"5+7804y"*+8596y**+9684y>'+10344y**+10688y>+11144y**+12072y*+13064
yO+13104 y*'+12272 y**+10922 y*+9680 y**+8272 y*'+6464 y**+4896 y**+4000y*
+3968}is+4352y36+4352y37+3904y38+3328y39+3072y40+2816y41+2048y42+1024y43
+256y




Topological indices of G,Cg.
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Wiener Hyper- Reverse- | Schultz Modified | Balaban | Harray | Conne-

Wiener Wiener Schultz ctivity

n=1 | 25756 136534 40478 139446 187437 1.36362 | 723.288 | 41.877
n=2 | 73468 559318 86612 377278 480193 1.01808 | 1024.45 | 57.6749
n=3 | 261436 2753270 286304 1280814 1559913 0.78897 | 1710.8 | 89.2709
n=4 | 1085628 | 15400950 | 994604 5120974 6024505 0.646783 | 3403.34 | 152.463
n=5 | 4928956 | 90898294 | 3644408 | 22682766 | 26075097 | 0.544036 | 7877.29 | 278.846
n=6 | 23182268 | 533474678 | 13832132 | 105254158 | 119440153 | 0.460527 | 20496.7 | 531.614
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