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         1. Introduction 
 
A topological index is a real number related to a structural graph of a molecule. It does not depend 
on the labeling or pictorial representation of a graph. In recent years there has been considerable 
interest in the general problem of determining topological indices of nanotubes, nanotori and 
fullerenes. It has been established, for example, that the Wiener and hyper-Wiener indices of 
polyhex nanotubes and tori are computable from the molecular graph of these structures. 
Accordingly, some of the interest has been focused on computing topological indices of these 
nanostructures. Let G be an undirected connected graph without loops or multiple edges, with the 
vertex set V(G) and the edge set E(G). The distance between two vertices x and y is denoted by 
d(x,y). The Winer index W(G) of G, which is the oldest topological index, is a distance based 
topological index and is defined as the sum of distances between all vertices of the graph:  
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There are some other distance based topological indices. The Hyper Wiener index WW(G) of G is 
defined as  
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Haruo Hosoya 1 introduced a distance-based polynomial, which he called the Wiener polynomial, 
related to each connected graph G as: 
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where d(G,k) is the number of pair vertices of G that are at distance k of each other. However, 
today it is called the Hosoya polynomial2,3. It is easy to see that it is equal to 
H(G,y)= . ∑
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Hosoya polynomial has many interesting properties such as4 
  

1. the degree of this polynomial equals the diameter of graph G, 
2. the coefficient of y in this polynomial equals the number of edges of G, 
3. the first derivative of this polynomial at y=1 is equal to the Wiener index, 
4. the second derivative of ),(2

1 yGyH  at y=1 is equal to the hyper-Wiener index. 
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The diameter d of a graph is the largest topological distance between any two vertices, i.e. the 
largest d(u,v) value in the distance matrix.  Balaban and co-authors introduced the reverse Wiener 
index5. They showed that starting from the distance matrix and subtracting from d each d(u,v) 
value, one obtains a new symmetrical matrix which, like the distance matrix, has zeroes on the 
main diagonal and, in addition, at least a pair of zeroes off the main diagonal corresponding to the 
diameter in the distance matrix. They obtained a general formula for reverse Wiener index of a 
graph G with N vertices and the diameter d as (see [5]) 
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Among the modifications of the Wiener index the Schultz index (Molecular Topological Index) 
that proposed by Schultz in6, appears to be one of the most studied topological indices. It is 
defined as  
 

∑
⊂

+=
)(},{

),())deg()(deg(
2
1)(

GVvu
vudvuGS  

 
where deg(u) is the degree of the vertex u, i.e. the number of the vertices joining to the vertex u. In 
addition to the chemical applications, the Schultz index attracted some attention after it was 
discovered that in the case of trees it is closely related to the Wiener index7. Klavzar and Gutman 
in [8] defined the modified Schultz index as  
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Let u and v be two adjacent vertices of the graph G and e=uv be the edge between them.The 
Balaban index of a molecular graph G was introduced by Balaban in 1982 as one of less 
degenerated topological indices. It calculate the average distance sum connectivity index 
according to the equation  
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where Q is the number of edges in G and μ is the cyclomatic number of G and  
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The Harary index, H = H(G), of a molecular graph G is based on the concept of reciprocal distance 
and is defined 
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in parallel to the Wiener index9-11, as the half-sum of the off-diagonal elements of the reciprocal 
molecular distance matrix. The reciprocal distance matrix can be simply obtained by replacing all 
off-diagonal elements of the distance matrix by their reciprocals. It should be noted that diagonal 
elements of the reciprocal matrix are all equal to zero by definition. This matrix was first 
mentioned by Balaban et al.12  
FullereneC60 is a spherically π -conjugated all-carbon molecule13 which can accept six electrons 
successively in solution. Thus, it is considered as one of the most attractive units for incorporation 
as a functional core in dendrimers. Actually, a C60 cage has been used as a core as well as branches 
of the dendrimers. In all the dendrimers having a fullerene cage as a core reported so far, the 
dendrons are connected to the C60 cages by a formal [2+1] cycloaddition like pattern A shown in 
Figure 1, including carbon, nitrogen, and iridium elements directly attached to the C60 cage. On the 
other hand, C60-based dendrimers with the addition pattern B are quite intriguing because the 
electronic and chemical properties of the central C60 cage should be dramatically changed by 
abstraction of the proton directly attached to the C60 cage15. Synthesis and properties of novel 
fullerene derivatives having dendrimer units GnC60H, n=1-4 and the fullerenyl anions GnC60, n=1-4 
generated therefrom discussed in [16] 
 
In this work compute several topological indices of the first C60-based dendrimers having various 
generations of dendrons with the addition pattern B. 
 

 
 

Fig. 1. 
 
Programs for computing some distance-based topological indices and polynomials of any 
graph 
 
In this section we compute distance-matrix of arbitrary graph G. Iranmanesh and his team wrote 
GAP programs for computing the PI and Szeged index of any graph. We continue this work and 
write a MATHEMATICA program to compute distance matrix of any graph which we can easily 
add a few simple lines to our program to compute some topological indices of graphs. For this 
purpose, the following algorithm is presented: 
Let G be a graph. First we do numbering the vertices of the graph G, then for every vertex i, the set 
of vertices that their distance to this vertex are equal to t is denoted by D(i)(t). If we denote the set 
of all adjacent vertices of a vertex i in the graph, with f(i), then we have 17   
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Using this fact we can write a simple MATHEMATICA program to generating the distance matrix 
of any graph. Let |V(G)|=m, then after numbering the vertices and defining the adjacent vertices of 
any vertex by a function f, we can write this program 
 
Diam=Table[dia[i],{i,1,m}]; 
For[i=1,i≤m, 
    u={i}; 
    x[i,1]=f[i]; 
    u=Union[u,x[i,1]]; 
    s=1; 
    t=1; 
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    While[1≤ s≤m , 
      x[i,t+1]={}; 
      For[k=1,k≤ Length[x[i,t]], 
        Com=Complement[f[x[i,t][[k]]],u]; 
        For[l=1,l≤ Length[Com], 
          AppendTo[x[i,t+1],Com[[l]]]; 
          l++]; 
        k++]; 
      u=Union[u,x[i,t+1]]; 
      If[x[i,t+1]=={},s=0,s=1]; 
      If[x[i,t+1]�{},dia[i]=t]; 
      t=t+1; 
      ]; 
    i++]; 
 
Now we are ready to write a program to generate the distance matrix of any graph. 
 
Dis=Table[d[i,j],{i,1,m},{j,1,m}]; 
For[i=1, i≤m, 
    For[j=1,j≤m, 
      For[k=1,k≤ dia[i], 
        If[i�j,d[i,j]=0]; 
        If[MemberQ[x[i,k],j],d[i,j]=k]; 
        k++]; 
      j++]; 
    i++]; 
 Now we can add some lines to the above program to compute many topological polynomials and 
related topological indices of any graph. Such as  
 
h[y_]:=1/2*Sum[Sum[y^d[i,j],{i,1,m}],{j,1,m}]; 
S[y_]:=1/2*Sum[Sum[(Length[f[i]]+Length[f[j]])*y^d[i,j],{i,1,m}],{j,1,m}]; 
M [y_]:=1/2*Sum[Sum[(Length[f[i]]*Length[f[j]])*y^d[i,j],{i,1,m}],{j,1,m}]; 
p[y_]:=y*h[y]; 
h[y]//Simplify 
S[y]//Simplify 
M[y]//Simplify 
W=Function[y,h'[y]][1] 
WW=1/2*Function[y,p''[y]][1] 
RW=1/2*(m)(m-1)*Max[Diam]-W 
Sch=Function[y,S'[y]][1] 
ModSch= Function[y,M'[y]][1] 
Q=CoefficientList[h[y],y][[2]] 
 
where h[y], S[y], M[y], W, WW, RW, Max[Diam], Sch, ModSch and Q are the Hosoya 
polynomial, Schultz polynomial, Modified Schultz polynomial, Wiener index, hyper-Wiener 
index, reverse-Wiener index, the diameter, Schultz, Modified Schultz indices and number of edges 
of graph G. 
Moreover we can add simple below programs for computing the Balaban index, Harray index, 
Connectivity index: 
 
J=0; 
H=0; 
R=0; 
dd[i_]:=Sum[d[i,j],{j,1,m}]; 



717 
 
For[i=1,i≤ m, 
    For[j=1,j≤ m, 
      If[d[i,j]�1,J=J+(dd[i]*dd[j])^-0.5]; 
      If[i<j,H=H+1/d[i,j]]; 
      If[d[i,j]�1, R=R+(Length[f[i]]*Length[f[j]])^-0.5]; 
      j++]; 
    i++]; 
J=(Q)/(Q-m+2)*J(*this is the balaban index of graph*) 
H//N(*this is the Harray index of graph*) 
R=1/2*R(*this is the connectivity index*) 
 
Some distance-based topological indices and counting polynomials of fullerene 
In this section, using the programs in the previous section, we compute some topological indices 
and polynomials of fullerene as follows. 

 
 

Fig. 2. Numbering for [60-Ih] fullerene in 2D and 3D format (pictures taken from [18]) 
 
Firstly we number the fullerene vertices as shown in the Figure 2, and then we can write the 
following MATHEMATICA program 
 
A=Table[a[i],{i,1,60}]; 
a[6]=1; 
For[i=1,i≤5, 
    If[EvenQ[i],a[i]=5*i/2+7,a[i]=5*(i-1)/2+9]; 
    i++]; 
For[i=7,i≤21, 
    a[i]=Which[i�7,21,i�21,7,Mod[i,5]�4,2*(i-4)/5-1,Mod[i,5]�2,2*(i-2)/5-2,Mod[i,5]�3,6*(i-
3)/5+18,Mod[i,5]�0,6*i/5+14,Mod[i,5]�1,6*(i-1)/5+16]; 
    i++]; 
For[i=22,i≤39, 
    a[i]=Which[i�22,39,i�39,22,Mod[i,6]�5,5*(i-5)/6+27,Mod[i,6]�1,5*(i-
1)/6+23,Mod[i,6]�3,5*(i-3)/6+25,Mod[i,6]�0,5*i/6-12,Mod[i,6]�2,5*(i-2)/6-10,Mod[i,6]�4,5*(i-
4)/6-9]; 
    i++]; 
For[i=40,i≤54, 
    a[i]=Which[i�40,54,i�54,40,Mod[i,5]==1,2*(i-6)/5+42,Mod[i,5]�4,2*(i-
4)/5+41,Mod[i,5]�2,6*(i-2)/5-25,Mod[i,5]�0,6*i/5-27,Mod[i,5]�3,6*(i-3)/5-23]; 
    i++]; 
For[i=55,i≤60, 
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    a[i]=Which[i�55,60,i�60,55,Mod[i,2]�0,5*i/2-99,Mod[i,2]�1,5*(i-1)/2-96]; 
    i++]; 
f[i_]:=Which[i�1,{2,6,a[i] },i�60,{59,51,a[i]},2≤i≤59,{i-1,i+1,a[i]}]; 
  
Now we put m=60 in the programs of previous section, and run these programs. We summarized 
the outputs in the tables 1, 2.  
 
 

Table 1. Counting polynomials of fullerene 
 
Hosoya polynomial 30(1+3y+6y2+8y3+10y4+10y5+10y6+8y7+3y8+y9) 
Schultz polynomial 180(1+3y+6y2+8y3+10y4+10y5+10y6+8y7+3y8+y9) 
Modified Schultz polynomial 270(1+3y+6y2+8y3+10y4+10y5+10y6+8y7+3y8+y9) 
 

Table 2. Topological indices of fullerene. 
 
Wiener Hyper-

Wiener 
Reverse-
Wiener 

Schultz Modified 
Schultz 

Balaban Harray Connectivity

8340 27180 7590 50040 75060 1.82104 493.869 30 
 
 
Some distance-based topological indices and counting polynomials of GnC60 
 
As another example, in this section, we compute some-topological indices and counting 
polynomials of fullerenyl anions having dendrimer units by use of our programs. 
Note that in all the dendrimers having a fullerene cage as a core, the dendrons are connected to the 
C60 cages and it is easy to see that the number of all vertices of GnC60 is 68+16(2n-1). 
First we do numbering all of vertices of GnC60. For this purpose we number the vertices of C60 
cage as the same of previous section from 1 to 60 and since that the dendrimer units joint to the 
C60 cage at the vertex  number 1, we label this vertex with  68+16(2n-1). Now we continue the 
numbering from 61 to 67 as shown in the figure 3. Remaining vertices are separated in eight types 
A, B, C, D, E, F, G, and H. Note that the number of vertices of any above eight type is 2(2n-1).We 
start with vertices of type A and label them, with numbers 68-67+2(2n-1), of course 68-66+2n for 
right hand and 67+2n-67+2(2n-1) for left hand vertices, and continue this numbering method  
respectively for vertices of other types as shown in the figure 5.   

 
 

Fig. 3. 
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Fig. 4.Vertices of type A, B, C, D, E, F, G and H in the left and right hand dendrimer units. 

 

 
Fig. 5. G4C60 and numbering of atoms. 

 
Now we are ready to define the function f[i] as follows. 
 
A=Table[a[i],{i,1,60}]; 
a[6]=1; 
For[i=1, i≤5, 
    If[EvenQ[i],a[i]=5*i/2+7,a[i]=5*(i-1)/2+9]; 
    i++]; 
For[i=7, i≤21, 
    a[i]=Which[i�7, 21, i�21, 7, Mod[i,5]�4, 2*(i-4)/5-1, Mod[i,5]�2, 2*(i-2)/5-2, Mod[i,5]�3, 
6*(i-3)/5+18, Mod[i,5]�0, 6*i/5+14, Mod[i,5]�1, 6*(i-1)/5+16]; 
    i++]; 
For[i=22, i≤39, 
    a[i]=Which[i�22, 39, i�39, 22, Mod[i,6]�5, 5*(i-5)/6+27, Mod[i,6]�1, 5*(i-1)/6+23, 
Mod[i,6]�3, 5*(i-3)/6+25, Mod[i,6]�0, 5*i/6-12, Mod[i,6]�2, 5*(i-2)/6-10, Mod[i,6]�4, 5*(i-4)/6-
9]; 
    i++]; 
For[i=40, i≤54, 
    a[i]=Which[i�40, 54, i�54, 40, Mod[i,5]= =1, 2*(i-6)/5+42, Mod[i,5]�4, 2*(i-4)/5+41, 
Mod[i,5]�2, 6*(i-2)/5-25, Mod[i,5]�0, 6*i/5-27, Mod[i,5]�3, 6*(i-3)/5-23]; 
    i++]; 
For[i=55, i≤60, 
    a[i]=Which[i�55, 60, i�60, 55, Mod[i,2]�0, 5*i/2-99, Mod[i,2]�1, 5*(i-1)/2-96]; 
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    i++]; 
B=Table[b[i],{i,68,67+2*(2^n-1)}]; 
For[i=68, i≤67+2*(2^n-1), 
b[i]=Which[i�68, 63, i�67+2^n, 67, n≥2&&69≤i≤66+2^n&&Mod[i,2]�0, 67+12*(2^n-1)+(i-
68)/2, n≥2&&69≤i≤66+2^n&&Mod[i,2]�1, 67+8*(2^n-1)+(i-67)/2, 
n≥2&&68+2^n≤i≤67+2*(2^n-1)&&Mod[i,2]�0, 67+9*(2^n-1)+(i-(66+2^n))/2, 
n≥2&&68+2^n≤i≤67+2*(2^n-1)&&Mod[i,2]�1, 67+13*(2^n-1)+(i-(67+2^n))/2]; 
    i++]; 
f[i_]:=Which[i�68+16*(2^n-1), {1,61},i�1, {2,6,a[i], 68+16*(2^n-1), i�60,{59,51,a[i]}, 2≤i≤59, 
{i-1,i+1,a[i]}, i�61, {68+16*(2^n-1), 62, 62≤i≤63,{i-1,i+1,i+5}, 64≤i≤66,{i-
1,i+1},i�67,{62,66,68+2^n-1},68≤i≤67+2*(2^n-1),{b[i],i+2*(2^n-1)}, 68+2*(2^n-1)≤i≤ 
67+4*(2^n-1)||68+6*(2^n-1)≤i≤ 67+8*(2^n-1),{i-2*(2^n-1),i+2*(2^n-1)},68+4*(2^n-1)≤i≤ 
67+6*(2^n-1),{i-2*(2^n-1),i+2*(2^n-1),i+10*(2^n-1)},n≥2&&68+8*(2^n-1)≤i≤ 67+9*(2^n-1)-
2^(n-1),{i-2*(2^n-1), i+2*(2^n-1),2*(i-67-8*(2^n-1))+67},68+9*(2^n-1)-2^(n-1)≤i≤ 67+9*(2^n-
1),{i-2*(2^n-1), i+2*(2^n-1), n≥2&&68+9*(2^n-1)≤i≤ 67+10*(2^n-1)-2^(n-1),{i-2*(2^n-
1),i+2*(2^n-1),2*(i-67-9*(2^n-1))+66+2^n},68+10*(2^n-1)-2^(n-1)≤i≤ 67+10*(2^n-
1)||68+10*(2^n-1)≤i≤67+12*(2^n-1) ,{i-2*(2^n-1),i+2*(2^n-1)},n≥2&&68+12*(2^n-1)≤i≤ 
67+13*(2^n-1)-2^(n-1),{i-2*(2^n-1),i+2*(2^n-1),2*(i-67-12*(2^n-1))+68, 68+13*(2^n-1)-2^(n-
1)≤i≤ 67+13*(2^n-1),{i-2*(2^n-1),i+2*(2^n-1), n≥2&&68+13*(2^n-1)≤i≤ 67+14*(2^n-1)-2^(n-
1),{i-2*(2^n-1),i+2*(2^n-1),2*(i-67-13*(2^n-1))+67+2^n},68+14*(2^n-1)-2^(n-
1)≤i≤67+14*(2^n-1),{i-2*(2^n-1), i+2*(2^n-1)},68+14*(2^n-1)≤i≤67+16*(2^n-1),{i-2*(2^n-1),i-
10*(2^n-1)}]; 
 
Now if we put m=68+16(2n-1) in our programs then we have following results that summarized in 
tables 3-6. 
 

Table3. Hosoya polynomial. 
 

n=1 42+117y+217y2+283y3+347y4+361y5+384y6+351y7+221y8+177y9+ 
166y10+182y11+181y12+158y13+130y14+101y15+66y16+32y17+10y18+2y19 

n=2 58+153y+265y2+331y3+393y4+413y5+442y6+419y7+295y8+253y9+ 
246y10+282y11+309y12+306y13+312y14+337y15+362y16+368y17+338y18+ 
294y19+240y20+172y21+96y22+36y23+8y24 

n=3 90+225y+361y2+427y3+485y4+517y5+558y6+555y7+435y8+397y9+ 
398y10+450y11+501y12+506y13+516y14+553y15+626y16+704y17+722y18+ 
750y19+808y20+868y21+880y22+796y23+696y24+592y25+472y26+352y27+ 
248y28+184y29+160y30+160y31+128y32+64y33+16y34 

n=4 154+369 y+553 y2+619 y3+669 y4+725 y5+790 y6+827 y7+715y8+685y9 
+ 702 y10+786 y11+885 y12+890 y13+908 y14+ 969 y15+1090 y16+1248y17 
+1298 y18+1342 y19+1432 y20+1604 y21+1776 y22+1772 y23+1861y24+ 
1952 y25+2120 y26+2240 y27+2120 y28+1928 y29+1728 y30+1520 y31 + 
1280 y32+976 y33+800 y34+768 y35+832 y36+896 y37+832 y38+704 y39 + 
640 y40+640 y41+512 y42+256 y43+64 y44 
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Table 4. Schultz polynomial. 
 

n=1 243+668y+1258y2+1647y3+2036y4+2120y5+2240y6+2011y7+1219y8+925y9+ 
870y10+941y11+924y12+808y13+665y14+511y15+332y16+160y17+50y18+10y19 
 

n=2 306+836y+1474y2+1867y3+2248y4+2356y5+2516y6+2327y7+1555y8+1296y9+ 
1254y10+1433y11+1544y12+1560y13+1617y14+1743y15+1864y16+1860y17+ 
1698y18+1474y19+1188y20+832y21+448y22+164y23+36y24 
 

n=3 450+1172y+1906y2+2307 y3+2672 y4+2828 y5+3068 y6+2943 y7+2195y8 + 
1952 y9+1942 y10+2225 y11+2424 y12+2472 y13+2545 y14+2767 y15+3160 y16 + 
3468 y17+3602 y18+3794 y19+4084 y20+4376 y21+4344 y22+3940 y23+3444y24+ 
2888y25+2288 y26+1632 y27+1096 y28+808 y29+704 y30+672 y31+512 y32+ 
256 y33+ 64 y34 
 

n=4 738+1844y+2770y2+3187y3+3520y4+3772y5+4172y6+4175y7+3475y8+ 
3264 y9+3318y10+3809y11+4152y12+4232y13+4337y14+4655y15+ 5368y16+ 
5964y17+6226y18+6482y19+6996y20+7928y21+8552y22+8708y23+ 9044y24+ 
9704y25+10624y26+10896y27+10248y28+9288 y29+8208 y30+7168 y31 +5760y32 
+4368y33+3600y34+3456y35+3480y36+3968 y37+3584 y38+3072 y39 + 2816 
y40+2688 y41+2048 y42+1024 y43+256 y44 
 

 
Table5. Modified Schultz polynomial 

 
n=1 334+963y+1835y2+2414y3+3003y4+3120y5+3274y6+2896y7+1684y8+1269y9+ 

1120y10+1193y11+1151y12+1006y13+826y14+624y15+402y16+192y17+60y18+12y19 
 

n=2 418+1155y+2081y2+2666y3+3243y4+3396y5+3598y6+3260y7+2066y8+1665y9+ 
1588y10+1801y11+1923y12+1974y13+2066y14+2224y15+2354y16+2300y17+2092y18 
+1804y19+1428y20+980y21+512y22+184y23+40y24 
 

n=3 586+1539 y+2573 y2+3170 y3+3723 y4+3948 y5+4238 y6+3964 y7+2798 y8+ 2401y9 
+2388 y10+2721 y11+2931 y12+3014 y13+3130y14+ 3464 y15+3938 y16+ 4268 y17+ 
4484 y18+4748 y19+5124 y20+5428 y21+5288 y22+4800 y23+ 4168 y24+ 3464 y25+ 
2696 y26+1856 y27+1216 y28+880 y29+768 y30+704 y31+512 y31+256 y31+64 y32 
 

n=4 922 +2307y+3557y2+4178y3+4683 y4+5052y5+5518y6+5372y7+4262 y8+3873 y9 
+3988y10+4545y11+4899y12+5030y13+ 5146y14+567 y15+6514y16+7132y17+ 
7476y18+7804y19+8596y20+9684y21+10344y22+10688y23+11144y24+12072y25+13064 
y26+13104 y27+12272 y28+10922 y29+9680 y30+8272 y31+6464 y32+4896 y33+4000y34 
+3968y35+4352y36+4352y37+3904y38+3328y39+3072y40+2816y41+2048y42+1024y43 
+256 y44 
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Topological indices of GnC60. 
 

 Wiener Hyper-
Wiener 

Reverse-
Wiener 

Schultz Modified 
Schultz 

Balaban Harray Conne- 
ctivity 

n=1 25756 136534 40478 139446 187437 1.36362 723.288 41.877 
n=2 73468 559318 86612 377278 480193 1.01808 1024.45 57.6749
n=3 261436 2753270 286304 1280814 1559913 0.78897 1710.8 89.2709
n=4 1085628 15400950 994604 5120974 6024505 0.646783 3403.34 152.463
n=5 4928956 90898294 3644408 22682766 26075097 0.544036 7877.29 278.846
n=6 23182268 533474678 13832132 105254158 119440153 0.460527 20496.7 531.614
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