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One dimensional Nd(OH)3 nanorods were successfully prepared through a 180 

o
C and 20 h 

hydrothermal reaction. Subsequently, the Nd(OH)3 nanorods were calcined at 450–600 
o
C 

for 2 h. Their phases and morphologies were characterized by XRD, SEM and TEM. The 

XRD patterns revealed the hexagonal Nd(OH)3 phase of the precursor and the hexagonal 

Nd2O3 phase of the final product. Upon calcination at 550 
o
C and above for 2 h, the 

hexagonal Nd(OH)3 nanorods were transformed into the hexagonal Nd2O3 nanorods with 

the shape remained unchanged. In this research, uniform Nd(OH)3 nanorods and Nd2O3 

nanorods with the increase in size by the high temperature calcination were detected.  
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1. Introduction 
 

Rare earth oxides have been used in a number of applied fields such as ceramic industries, 

catalysts for dehydrogenation, hydrogenation and esterification reactions and catalyst carriers for 

their special properties arising from their 4f electrons [1–6]. Among them, neodymium oxide 

(Nd2O3) has been widely used in photonic applications, luminescent materials, catalysts of 

ammoniation and oxidative coupling of methane or catalyst promoters, and protective coatings [5, 

7]. Thus the preparation and characterization of Nd2O3 nanorods have attracted much attention in 

recent years. There have been many reports for the preparation of Nd(OH)3 nanorods such as sol–

gel process assisted with porous anodic aluminum oxide (AAO) template [3], sol–gel auto-

combustion [6], tartrate route [7] and hydrothermal process [8]. 

In this research, Nd(OH)3 nanorods were successfully produced through a hydrothermal 

method. Subsequently, the Nd(OH)3 nanorods were calcined at 450–600 
o
C for 2 h by 

transforming the Nd(OH)3 phase nanorods into the Nd2O3 phase nanorods. Phases and 

morphologies of the products were further characterized by thermogravimetric analysis, X-ray 

diffraction, field emission scanning electron microscopy and transmission electron microscopy.   
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2. Experimental procedure 
 

In a typical preparation, 50 ml of 0.01 M Nd(NO3)3 aqueous solution was adjusted the pH 

to 10 by 3 M NaOH solution. It was transferred into a 100 ml Teflon-lined stainless-steel autoclave, 

which was filled with deionized water up to 80 % of its total capacity. The autoclave was tightly 

closed, heated at 180 
o
C for 20 h and cool down to room temperature. The resulting product was 

filtered, washed with distilled water and absolute ethanol, and dried at 80 
o
C for 12 h. Then the 

filtered self-template precursor was further calcined at the heating rate of 5 
o
C.min

-1
 at high 

temperature of 450, 500, 550 and 600 
o
C for 2 h in ambient atmosphere. 

The weight loss (less), purified phase, structure and morphology of the as-prepared 

products were characterized by a thermogravimetric analyzer (TGA -50 Shimadzu Scientific 

Instruments) under a stream of nitrogen at a heating rate of 10 
o
C/min, a Bruker AXS D8 Advance 

Powder X-ray diffractometer (XRD) with Kα line from a copper target, a JEOL JSM-6335F field 

emission scanning electron microscope (FE-SEM) operating at an accelerating voltage of 15 kV 

with Au sputtering on the test samples, and a JEOL JEM-2010 transmission electron microscope 

(TEM) operating at an accelerating voltage of 200 kV.  

 

 

3. Results and discussion 
 

Fig. 1 shows weight loss of the precursor at a temperature range of 45–650 
o
C under 

atmospheric condition. The total weight loss of the precursor was 15.65 % which is very close to 

the calculated value of 13.84 %. The weigh loss of Nd(OH)3 precursor can be classified into 3 

steps. First step is in the temperature range of 45–270 
o
C, corresponding to the evaporation of 

residual water adsorbing on the surface of Nd(OH)3. The second weight loss at the 270–430 
o
C 

temperature range was assigned as the dehydration and decomposition of Nd(OH)3 to produce 

NdOOH [9, 10]. The third weight loss was at 430–650 
o
C, corresponding to the phase 

transformation of NdOOH to hexagonal Nd2O3 structure [12, 13]. No critical weight change was 

detected at a temperature of and over 650 
o
C, indicating the thermal stability of Nd2O3 up to 650 

o
C. The Nd2O3 crystalline phase was still existence upon thermal annealing at a temperature over 

650 °C. TGA curve also exhibits the multiple dehydration and decomposition processes during 

testing, which can generally be described by the following [9–11]. 

 

Nd(OH)3 →  NdOOH + H2O                                   (1) 

 

 2NdOOH → Nd2O3 + H2O                        (2) 

 

The specimen weight remained unchanged at the end of the test, implying that all chemical 

reactions were completed and residual ash was left behind.  
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Fig. 1 Weight loss and the derivative of Nd(OH)3 precursor. 

 

 

Fig. 2 shows the X-ray diffraction patterns of different products. All diffraction peaks of 

the as-prepared precursor were indexed as pure phase of hexagonal Nd(OH)3 of the JCPDS No. 

70-0214 [12]. Due to the complete decomposition at 550°C, the hexagonal Nd(OH)3 phase was 

fully transformed into the pure hexagonal Nd2O3 structure in accordance with the database of 

JCPDS No. 75-2255 [12] caused by dehydration, decomposition and atomic arrangement. In this 

research, diffraction peaks of the products are very sharp and strong, indicating that they have very 

high crystalline degree.  

 

 
 

Fig. 2 XRD patterns of Nd(OH)3 precursor before (Non) and after calcination at 450, 500, 

550 and 600 
o
C for 2 h. 

 

 

Fig. 3a is a SEM image observed from the as-formed product hydrothermally produced at 

180 °C for 20 h. Clearly, the Nd(OH)3 product entirely consists of uniform nanorods in high yield 

with diameters of about 5−10 nm and lengths of 20−30 nm. They should be noted that these 

nanorods are straight with very smooth surfaces. Upon calcination the Nd(OH)3 product at a 

temperature of 550 
o
C for 2 h, the final product (Fig. 3b) remained as nanorods with the size range 

of 200−300 nm long.  
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Fig. 3 SEM images of (a) Nd(OH)3 and (b) Nd2O3 obtained by 550 
o
C calcination of the 

precursor for 2 h. 

 

 

Fig. 4 shows TEM images of the as-prepared Nd(OH)3 and Nd2O3 products. Clearly, the 

as-prepared Nd(OH)3 product was entirely composed of relatively uniform nanorods with the 

lengths of 20−30 nm and diameters of about 5 nm, in consistent with the results of SEM analysis. 

However, the length and diameter of the as-prepared Nd2O3 were increased with the increase in the 

calcination temperature from 450 
o
C to 600 

o
C. At 450 

o
C and 2 h calcination, the nanorods with 

200 nm long and 20 nm diameter were produced. The length and diameter of Nd2O3 nanorods 

were increased to 200−250 nm and 30−35 nm by calcination at 500 
o
C for 2 h, and to 200−400 nm 

and 40−60 nm by calcination at 600 
o
C for 2 h. The TEM analysis revealed that the particle size of 

Nd2O3 was increased with the increasing of the calcination temperature. 

 

 
Fig. 4 TEM images of (a) Nd(OH)3 prepared in the solution with the pH of 10, and 

followed by high temperature calcination of the Nd(OH)3 precursor at (b) 450 
o
C, (c) 500 

o
C and (d) 600 

o
C for 2 h. 
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4. Conclusions 
 

This research was to prepare Nd(OH)3 nanorods by a facile hydrothermal method in 

alkaline solution with the pH of 10. The pure Nd2O3 nanorods were prepared by the calcination of 

Nd(OH)3 at 550 °C and above. TGA analysis showed the evaporation, dehydration and 

decomposition of Nd(OH)3 to form Nd2O3 over the temperature range of 45–650 
o
C. The XRD 

patterns show the characteristic hexagonal Nd(OH)3 and Nd2O3 phases before and after high 

temperature calcination. SEM and TEM images showed that the hexagonal Nd(OH)3 and Nd2O3 

phases are uniform nanorods with different orientations. 
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