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Monte-Carlo estimations of the integrals of Bose-Einstein distribution function for 

magnons are performed, by avoiding number of approximations involved in the usual 

derivation of the Bloch T
3/2

 law, describing the dependence of magnetization with 

temperature in the low temperature regime, where the main mechanism of magnetization 

decrease is due to spin waves. More precisely: (i) the magnon dispersion law is considered 

the exact one (depending on the crystal structure) and not the quadratic approximation (k) 

 k
2
; (ii) the integrals are performed over the first Brillouin zone and the limit of the 

integral is not extended to infinity; (iii) the dimensionality of the system is taken into 

account: 1D, 2D and 3D systems are considered; (iv) finite size magnetic systems are 

treated by rigorous summation of the Bose-Einstein distribution function, without using 

the continuous limit. The results can be summarized as follows: (a) Infinite three-

dimensional (3D) systems exhibit deviations from the Bloch T
3/2

 law, namely the deviation 

from zero Kelvin magnetization |M|/M(0) behaves as T

, where  is sensibly (by some 10 

%) larger than 3/2 and, also, depends on the crystal structure considered. (b) Finite 3D 

systems exhibit more drastic deviation from the Bloch law, in that the  exponent deviates 

seriously from 3/2, going up to 2.5 for small systems of about 1,000 atoms. (d) Finite 2D 

systems also show serious deviations from the Bloch-like T law. As described a few years 

ago [C.M. Teodorescu, Surf. Sci. 601, 4292 (2007)], finite temperature magnetization may 

be considered only in finite size 2D systems. Several recent examples from literature are 

analyzed in the framework of the actual theoretical results. It is shown that M(T) analysis 

in the low temperature regime allows one to extract the average nanoparticle size of the 

magnetic moieties, and as well the exchange interaction and average spin quantum 

number. 
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1. Introduction 
 

 The Bloch T
3/2

 law is perhaps one of the most known and useful derivations from the 

theory of magnetism [1]. The usual Curie-Weiss phenomenological theory of ferromagnetism was 

found unsatisfactory in the low temperature regime. Instead, the dependence of magnetization with 

temperature M(T) was explained by introducing the spin waves (magnons), which are bosons 

propagating into the ferromagnetic crystal, described by wavevectors k. The T 
3/2

 dependence is 

obtained from the integral over the magnon states of the Bose-Einstein distribution; in three-

dimensional (3D) systems, the integral over the k space of k
2
dk pulls out a T

3/2
 factor, once the 

energy of magnons is proportional to k
2
. It follows that for low dimensionality systems the 

temperature exponent should be equal to 1 for 2D systems, and to 1/2 for 1D magnetic system. 

However, the 2D integral over magnon states exhibits a logarithmic divergence in the 

origin (k = 0), and the 1D integral exhibits an algebraic divergence at k = 0. This can be connected 
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to the Mermin-Wagner theorem [2] which states that no long range magnetic order may be 

achieved for systems with dimensions lower than 3 at finite temperatures. Gibbs energy 

calculations at finite fields and temperatures yielded a similar result [3], but here the divergence 

occurs when the applied field is set to zero. Moreover, applying the Dyson-Maleev formalism 

[4,5], many-loop corrections proposed by Ref. [3] reinforced the divergence for the 1D case. 

Nevertheless, linear M(T) dependencies on the form M(T) = M(0) - Const. x T were 

reported for quasi-2D systems synthesized by molecular beam epitaxy (MBE) [6-9] or even under-

linear dependencies M(T) = M(0) - Const. x T

 with   < 1 in Ref. [10]. Some years ago, Ref. [6], 

based also on experimental results on Ni single atomic layers grown on Cu(001), suggested that a 

consistent 2D spin wave theory can be elaborated only for finite size 2D systems, where the 

introduction of a low cutoff kmin. wavevector of magnons avoids the divergence near the origin of 

the k space for 2D Bose integrals. This low cutoff magnon wavevector is connected to the inverse 

of the maximum magnon wavelength, which, in turn, is connected to the finite size of the 2D 

system investigated. Consequently, the analysis of M(T) in the low temperature regime can be used 

to estimate both the dimensionality (from the value of the temperature exponent) and the size 

(from the value of the multiplication constant) of finite size magnetic systems, such as: (i) buried 

or embedded 2D layers or 3D nanoparticles; (ii) 3D nanoparticles whose size does not allow their 

observation by structural methods, e.g. X-ray diffraction or electron microscopy. 

It is now needed a further step in the development of this physics, namely the evaluation 

of the effects of the low wavevector cutoff also in 3D systems of variable crystal structures. But, in 

dealing with this evaluation one encounters the following problem: the low cutoff magnon 

wavevector is not that low (in 3D) such as to permit the quadratic approximation of the magnons' 

dispersion law. Indeed, for a 1D system, the magnon dispersion law can be written as (k) = 4JS 

[1-cos(ka)] ≈ 2JS(ka)
2
, which holds for ka << 1 (here and in the following a is the lattice constant, 

J the Heisenberg exchange integral, and S the individual spin value; for 2D and for 3D systems 

with different crystal structures the reader is reported to the following Section). Now, for a 

maximum magnon wavelength of max = 10 a, the cutoff value kmin = 2max and kmina = /5, 

which is not a small value. Back to 3D systems, max = 10 a corresponds to nanoparticles of 1,000 

atoms, whose lateral dimensions range between 2 and 3 nm, so to real systems of interest for this 

study. A 2D system composed by a similar number of spins will have max = 1000
1/2

 a ≈ 32 a and 

kmina = /16, which starts to be acceptably small. For a 1D system, kmina = /500 and the quadratic 

approximation holds perfectly. Therefore, especially for 3D finite systems the quadratic dispersion 

law for magnons is not appropriate. 

For larger systems (ribbon-shaped Fe nanoparticles with typical dimensions from several 

tens to hundreds of nanometers), computations were performed by keeping all the approximations 

from the spin wave theory in Ref. [11], where just the Bose integral was splitted into different 

parts, where more 1D, 2D, or 3D magnons' degrees of freedom are identified according to the 

magnons' wavelength which could be accommodated just over the length of the ribbons (1D), the 

length x width (2D), or length x width x thickness (3D). In this pioneering work, however, no 

special meaning was given e.g. to the necessity of introduction of a cutoff in 2D or 1D systems, 

besides which the Bose integrals are divergent. 

The problem of finite size ferromagnets and deviations from the Bloch law was treated for 

finite cubic systems a few years ago in Ref. [12], where, by using summation instead of integration 

and the exact magnon dispersion law instead of the parabolic approximation, a dependence such as 

M(T) = M0 - Const.1 x T 
3/2

 + Const.2 x T. However, the author agrees also with the fact that in 

some experimental cases the modified Bloch law M(T) = M(0) - Const. x T

 reproduces with equal 

accuracy some experimental data. Therefore, more effort is needed, in particular comparisons with 

experimental data and tackle of other crystal structures, in order to provide more insight in the low 

temperature behavior of magnetization in finite size effect. As stated above, this effort is 

supplemented in the present paper by a treatment of 2D and 1D cases, which may present 

nonvanishing average magnetic moment at finite temperatures only when their size is finite. 

Section 2 will summarize in more details the usual derivation of the Bloch law. It will be 

shown that is highly desirable to achieve accurate evaluations of the Bose sums or integrals with as 
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few as possible approximations. This is the reason for which a first development of this paper (§ 

3.1) deals with numerical computation of the Bose integrals without (i) the quadratic 

approximation of the magnons' dispersion law; (ii) without extending the Bose integral to infinity, 

but performing real integration over the magnon states over the first Brillouin zone. This will be 

achieved for 3D systems of simple cubic (sc), face-centered cubic (fcc) and body-centered cubic 

(bcc) systems. Indeed, deviations of the temperature exponent from 3/2 are found, which are 

depending on the crystal structure considered. Then, in the same Paragraph, evaluation of the sums 

of Bose-Einstein distribution function with real dispersion laws will be performed and compared 

with the integrals for infinite systems. The results will be found to be strong dependent on the size 

of the system, but also the dependence on the crystal structure is noticeable for finite systems. 

§ 3.2. deals with computations on finite size 2D systems and is, in fact, a more accurate 

continuation of Ref. [6]. § 3.3. presents briefly the 1D case, whereas Section 4 is concerned with 

the experimental data. In this Section, some comments will be made connected to the observability 

of the phenomena predicted in this paper in real experiments and then five cases of interest of 

surface magnetism will be analyzed. Finally, Sec. 5 presents the conclusions.  

 
 
2. Approximations in the usual derivation of spin waves’ induced  
    magnetization dependence 
 

 In Appendix 1, the first steps of the derivation from [1] are recalled, including the first 

approximation used (Ap1), that of small oscillation amplitudes of the spins. It is clear that 

theoretical effort is also needed to deal with non-small amplitude spin waves, where several 

magnon modes have to be taken into account [13]. However, this first approximation will not be 

questioned in this paper. 

 

Approximation Ap1: Small oscillation amplitudes 

 The dispersion law for magnons is derived in the linear case as:  

(i) 1D system 

ħ = 4 JS (1 - cos ka)                                                      (1) 

For 2D or 3D lattices of spins, the dispersion law is generalized as follows: 

                
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where the sum is performed over all Q nearest-neighbors separated from the considered spin by the 

lattice vectors al, l = 1,...,Q.  

Examples:  

(ii) 2D square lattice : 

ħ = 4 JS (2 - cos kxa - cos kya)                          (3) 

(iii)  3D simple cubic (sc) lattice: 

ħ = 4 JS (3 - cos kxa - cos kya - cos kza )              (4) 

(iv)  3D body centered cubic (bcc) lattice: 
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Once the dispersion law is derived, by summing over the magnon states the Bose-Einstein 

distribution (magnons are bosons, according to Holstein-Primakoff theory [14], even if individual 

spins may take half integer values), one can derive the relative variation of the magnetization: 
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            (7) 

N being the total number of spins of the system, S the spin quantum number and kB the Boltzmann 

constant. 
 

Approximation Ap2: Small magnon wavevectors  

The product 2JS multiplying the magnon's dispersion law is on the order of 10-30 meV for 

most magnetic systems [1]. On the other hand, the aim of the theory is to explain the magnetic 

behaviour at low temperatures T ≤ 30 K, where kBT ≤ 2.5 meV. Relevant contributions in the 

Bose-Einstein distribution law (7) will be given only by small wavevectors magnons. 

Consequently, the cosine function in all dispersion laws (1-6) is developed in power series over k 

and only the second order terms in k are retained. The preceding equations yield a quadratic 

dispersion law for magnons, irrespective on the dimensionality of the system and on the crystal 

structure (for 1D, 2D and 3D): 

                                                           ħ = 2 JS (ka)
2                                                                                        

(8) 

 

Approximation Ap3: Large systems and quasicontinuous spectrum of magnons 

As usual in solid state physics, the magnon waves must be stationary within the system, 

considered either as a rectangular box of dimensions (Lx x Ly x Lz) for 3D systems, as a rectangle 

(Lx x Ly) for 2D systems or as a line segment of dimension L for 1D systems: 

                                                         kL = 2n,  = x, y, z                                             (9) 

by respecting the dimensionality (r) of the system: r = 1 with no  indexing in (9); r = 2 with  = 

x, y; or r = 3 where (9) holds fully. Hence, the sum over magnon states from (7) is transformed as 

follows: 
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where 1 = 
r
n = nxnynz in the 3D case (r = 3) and has similar forms in the cases of r = 1, 2; the 

volume of a 3D system is V = Lx Ly Lz and the area of a 2D system is A = LxLy. The integral(s) over 

each component a of the magnon wavevector k is performed within the first Brillouin zone (- /a 

→ 0 → /a). A necessary comment here is that the zero value of the magnon wavevector 

corresponds to an infinite magnon wavelength  = 2/k; however, this is valid only for infinite 

spatially extended systems. For real systems, one has to isolate the zero magnon wavevector from 

the integral in (10) by introducing a low wavevector cutoff kmin. connected to the maximum 

available wavelength max. = 2/k min.; max is necessarily connected to the (macroscopic) dimension 

of the system. As was already commented, this observation will be of particular interest for 

magnetic clusters and for low dimensional systems with r ≤ 2, since it avoids the divergence of the 

Bose-Einstein integrals near the k = 0 . 

 

Approximation Ap4: Small lattice constants, small temperatures, large exchange 

constants: extension of the integral over the first Brillouin zone to infinite reciprocal space 
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For computation of the relative variation of the magnetization (7), one has to introduce the 

Bose-Einstein distribution function [exp(ħ / kBT) - 1]
-1

 into (10). At the edges of the Brilouin 

zone k = ± /a, ħ= 4JSQ ≈ 0.1 - 0.5 eV, whereas kBT ≈ 1-10 meV for the physics of interest. 

Consequently, at the edges of the Brillouin zone the Bose-Einstein distribution function [exp(ħ / 

kBT) - 1]
-1

 ≈ exp(- ħ / kBT) ~ 10
-5

 at most. In this case, the integral over the first Brillouin zone is 

extended over the whole reciprocal space, by assuming that large wavevector magnons with k > 

/a give negligible contribution in the sum over the Bose distribution function. 

In view of all the above approximations, one obtains the well-known Bloch T
3/2

 law for 

infinite 3D systems: 

 

(Ap4)                                                   (Ap2)                                          (Ap3)         
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where V = Na
3
/R, R being the number of atoms in the elementary cell (R = 1 for sc, R = 2 for bcc, 

R = 4 for fcc). The vertical arrows in the above equation indicate the level at which each one of the 

approximations (Ap2-4) appears. In the following, we shall question numerically these 

approximations and we shall modify the above expression for finite and low-dimensional (1D, 2D) 

systems. 

In fact, this last approximation (Ap4) comprises two approximations: (i) once one 

integrates over a sphere of radius /a in the k space instead of the first Brillouin zone, which has 

its specific shape [1] and this approximation will be denoted as (Ap4.1); (ii) secondly, the integral 

is extended to infinity, and this approximation will be denoted as (Ap4.2). 

 

 

 3. Computations 
 
 3.1. Three dimensional systems. Combined effects of size and crystal structure 

In the following, computations will be performed for values of thermal energy kBT 

sometimes exceeding the nearest-neighbor direct exchange energy J. The Curie temperature of the 

corresponding infinite ferromagnet is given by kBTC = S(S + 1) J z/3, where z is the number of 

nearest-neighbors of an interacting spin S in the material [1]. Therefore, for large values of the 

total atomic spin S (> 1) and z = 8 for bcc structures or z = 12 for fcc structures, kBTC may exceed 

the product S x J by almost one order of magnitude. Although this range of temperatures cannot be 

regarded as “low” (according to Ap.4 discussed above), it still characterizes a magnetic system 

where the overall exchange energy aligning each spin by its nearest neighbors is considerably 

higher than the thermal energy. A complete treatment of this problem would involve also 

discarding the approximation of small oscillation amplitudes (Ap.1). Nevertheless, e.g. in Ref. 

[12], a simulation based on a modified Bloch law is proposed for manganese ferrite nanoparticles, 

up to a maximum temperature of about 300 K, which has the same order of magnitude as the Curie 

temperature of this compound [15]. Therefore, we will retain simulations where the thermal energy 

is on the same order of magnitude as the nearest-neighbor exchange energy, knowing that the 

considered (bulk) systems are still far below their Curie temperatures and, finally, testing these 

computations with experimental data in Sec. 4. On the other hand, smaller values of the parameter 

(kBT)/(JS) will be more often used in the computation (the density of input values will be increased 

for smaller temperatures), therefore all derivations infered from these computations will be much 

more sensitive and applicable for low temperatures, where it is to be expected that the spin waves 

dominate the temperature variation of the magnetization. 
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The Bose-Einstein 3D integrals: 
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are performed by Monte-Carlo method, by using at least 10
9
 summation steps, which correspond 

to approximately 1,000 integration steps over each direction. The relative variation of the final 

result during the last Monte-Carlo steps was in the range of 2 x 10
-4

. Figure 1 presents the results 

of the integration for sc, bcc and fcc crystal structures. The data are fitted with a power function 

(the modified Bloch law): 

 

    

 
Fig. 1. Integrals of the Bose-Einstein distribution function over the first Brillouin zone for 

(a) simple cubic; (b) bcc structure; (c) fcc structure, together with the Bloch law (11). The 

blue curves represent exact sums over the corresponding finite structures, according to eq. 

(7),  together  with  fits with Bloch-like formulas A x T

. One has considered S = 1.  is a  

     dimensionless parameter, expressing the maximum magnon wavelength in a units. 

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where the power  yielded 1.586 for fcc structure, 1.652 for bcc and 1.663 for sc. Therefore, 

evaluation of the integrals over the first Brillouin zone yields considerable and perhaps measurable 

deviations from the Bloch T
3/2

 law. 

Figure 1 presents also the results of the summation by using eq. (7), in all directions from 

(- /a) to (/a) in steps of 2/(a), for different values of the  parameter, which may be thought 

as the extension of the system in any of the (x, y, z) direction. Fig. 1(a) presents the results for sc, 

Fig. 1(b) for bcc, and Fig. 1(c) for fcc structure. All data are fitted with the power law (12), and the 

two fitting parameters A and  are plotted as function on the size parameter  in Fig. 2. Then, these 
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dependencies are simulated with exponential decay, as mentioned also in Fig. 2. From this 

procedure, we may derive the theoretical relative variation of magnetization vs. temperature as 

function on S, J and . In Appendix 2, all fitting parameters from the simulations of Fig. 2 are 

given with an increased number of significant digits, such that one can build up the M/M(0) 

curve quite easily for all the three crystal structures considered in this paragraph. 

 

    
Fig. 2. Fitting parameters (A in (a) and  in (b)) for the magnetization curves obtained for 

finite structures from Fig. 1, as function on the size parameter , together with simulations 

with exponential decaying functions, whose  approximate  formulas  are  given  on  each  

                                                                          figure. 

 

 3.2. Two dimensional systems. Size effects 

 
In the 2D case, the Bose-Einstein integral becomes finite only by introducing the 

minimum magnon wavevector cutoff kmin. = 2/(a). In Ref. [6], an evaluation of the Bose-

Einstein integral is made by introducing this cutoff (however, letting infinity for the upper 

integration limit), which can be translated within the actual notations as: 

 
Fig. 3. Magnetization curves for 2D systems (S = 1), as function on the size parameter , 

by direct summation. Insert (i) presents evaluation of the integrals with cutoff parameters, 

eq. (13). The results of the summation from the main graph are fitted by eq. (14), and 

insert (ii) represents the errors of the fitting procedure, since the fits are indistinguishable  

                                      from the initial computations on the graph. 

 



728 

 

 






























 
1

π8
explog

π8

π
)(

)0( B

2

2

2

B

2 Tk

JS

JS

Tk

SM

M

i


                          (13) 

 

However, we found more useful to perform 2D sums for this system. Figure 3 presents the 

results, together with a fit of these curves with the following formula: 
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In one of the inserts of Fig. 3, the integral dependencies from eq. (13) are also given. 

Empirically, for average size systems, one finds: 
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which has the following explanation: the cutoff parameter introduced in evaluation the Bose-

Einstein integral and yielded eq. (13) is a cutoff parameter related to the maximum radial size of 

the system (considered circularly symmetric), whereas the  parameter refers to the whole system, 

thus its equivalent for the 'integral' system is rather the diameter of the circle in the k plane. 

 

Fig. 4. Fitting parameters (A in (a), x0 in (b) and  in (c)) for the magnetization curves 

obtained for finite structures from Fig. 3, as function on the size parameter , together 

with simulations by using power functions, whose approximate formulas are given on each  

                                                                           figure. 

 

The  dependencies of A, x0 and  from eq. (14) are plotted in Fig. 4. The same procedure 

is followed as in the previous paragraph, namely these dependencies are simulated with empirical 

functions (power laws, such as a + b x 
c
), and the parameters a, b, c are fitting parameters. 

Rounded values of these parameters are given in Fig. 4, whereas more exact values of them are 

listed in Appendix 2. 

 

 3.3. One dimensional systems 

 
The same procedure was applied for 1D summation. The same model functions are used 

for the fitting of the relative magnetization dependence on the temperature, and for the dependence 

of the fitting parameters on . The results are all summarized in Fig. 5. Fig. 5(a) presents the 

|M(T)|/M(0) dependence on kBT/(JS), for several values of . Fig. 5(b-d) presents the 

dependencies of A, x0 and  from eq. (14), together with their fits by a + b x 
c
. The fitting 

parameters a, b, c are sketched in Fig. 4, more exact values are also listed in Appendix 2. 
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Fig.5. Results of simulations for the 1 D case: (a) relative magnetization dependence on 

temperature, together with its fit by eq. (14); (b-d) fitting parameters (A in (a), x0 in (b) 

and in (c)) for the |M(T)|/M(0) dependences as function on the size parameter , 

together  with  simulations  by  using  power  functions, whose approximate formulas are  

                                                       given on each figure. 

 

 

 4. Experimental data analysis 
 
4.1. Usefulness of the method to derive size, dimensionality, and  crystal  

       structure of finite size magnetic systems 

 
The estimated results which may be obtained from M(T) in view of the present 

considerations suggest that trials should be made to apply these considerations in order to derive 

nanoparticle or nanoisland sizes, dimensionalities, and crystal structures just from magnetometry. 

However, there are number of experimental limitations or side effects which will be considered in 

the present paragraph. 

Taking into account the above observations, particularly on the magnitude of the M(T), 

as may be derived from eqs. (12) and (14), no doubt exists that consistent experiments could be 

performed for 2D systems. Particularly, for larger 2D systems, the decrease in the magnetization 

will be more and more abrupt, although the temperature exponent approaches unity for a wider 

range of temperatures. The recent example of Ref. 6 proved that this method works and could 

provide useful information (e.g. lateral dimension of nanoislands) even for buried 2D magnetic 

layers. 

A more serious problem occurs when one desires to investigate 3D systems, which 

commonly consist on magnetic nanoparticles separated in a matrix, with eventually a size 

distribution. We focused on the idea of determination of the size and crystal structure of such 3D 



730 

 

 

systems, where this times the relative variation of the magnetization from its value at 0 K is just a 

few percents. Such systems exhibit superparamagnetic (SP) behaviour [16-18], consisting in: (i) 

existence of a regime at higher temperatures where the magnetic spins are aligned inside the 

nanoparticles, but the overall nanoparticles' spins are mutually decoupled (SP); (ii) existence of a 

"blocked" regime at lower temperatures, whose explanation is that thermal activation is not 

sufficient to take over magnetic anisotropy and to promote alignment of the moments of 

nanoparticles with the applied magnetic field [16-19]; (iii) even in the SP regime, mutual 

interactions between nanoparticles are not negligible, consequently one speaks about "interacting 

superparamagnetic regime" (ISP), described phenomenologically by the addition of an offset in the 

temperature T*, connected to random dipolar interactions between nanomagnets [20]. The 

blocking temperature (TB) is usually determined from field-cooled and zero field-cooled M(T) [21], 

or from the coercitive field dependence with temperature  {1 - (T/TB)
1/2

} [19,22,23]; it is 

connected to the product between the magnetocrystalline anisotropy constant and the nanoparticle 

volume [16-19], divided by log(0/), where  is a frequency related to the experimental 

variation of the magnetic field and  the attempt frequency to induce magnetization reversal. The 

latter is connected to the ferromagnetic resonance frequency [24]. 

Generally, the magnetization curve M(H) in the SP regime is well approximated as the 

Langevin function, which is used to determine the overall magnetic moment of the nanoparticle 

and hence its size (number of individual magnetic moments) [20]. The situation is somehow 

complicated when dealing with distributions of nanoparticles, where phenomenological 

description of their size distribution (e.g. lognorm) should be taken into account [23,25,26]. Recent 

studies have shown that interaction between nanomagnets could alter the derivation of the 

nanoparticle sizes [20], that also the magnetic anisotropy exhibit considerable dependence with 

temperature [22]. Up to now, in either the SP, the ISP or the blocked regime the overall saturation 

magnetization of nanomagnets was considered constant [22,23]. Within the present work, also this 

hypothesis is questionable, owing to spin waves inside the nanoparticles. 

It is difficult to separate between all these effects, all of them depending on temperature. It 

was noticed that even for nickel, which has the weaker anisotropy of the 3d metals [27], blocking 

temperatures vary between 20 to 40 K (from an experimental study [23]) or between 50 and 150 K 

(theoretical study for Ni nanoparticles of 10 x 10 x 10 nm
3
, respectively 20 x 20 x 20 nm

3
 [22]). 

There are two measurement philosophies: (i) to concentrate in the SP regime, fit with the Langevin 

function and plot the resulting moments as function of temperature (with eventual temperature 

offset correction from random dipolar forces, as proposed in Ref. [20]); this is recommendable for 

systems with low anisotropy; (ii) to concentrate in the blocked regime and remove the Arrhenius 

deviation towards equilibrium, recommended for systems with high anisotropy (this could be 

achieved e.g. by comparing "fast" and "low" measurements etc.); (iii) to use dedicated high spatial 

resolution techniques, allowing experiments of a single nanoparticle / nanomagnet / nanodot, such 

as magnetic force microscopy, confocal Kerr microscopy [28], X-ray magnetic circular dichroism 

using "micro-XAS" facilities at synchrotron research centers, etc. We have suggested that 

experiments will give the final advice whether the method may be commonly used in 3D systems 

or not. However, in the following we will question several systems by the simpler approach 

developed above, based on magnetization curves versus temperature, in the low temperature 

regime. 

 

 4.2. Examples 

 
 a) Half a monolayer of Mn deposited on Cu(001), reconstructed c (2 x 2) 

 This experiment is reported in Ref. [29]. Half of a single Mn layer is deposited on Cu(001) 

and forms a well ordered superstructure c (2 x 2), as seen by low energy electron diffraction 

(LEED). That means that, in average, one Mn atom is present for each two surface unit cells of 

Cu(001). This surface was ferromagnetic at low temperatures, as it was probed by X-ray magnetic 

circular dichroism. The temperature dependence of its magnetization is plotted in Fig. 6(a).  
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Fig. 6. Experimental data analysis: (a) MnCu(001) surface alloy [29], with one 2D phase; 

(b) Ni monolayer/Cu(001) [6], with a combination of two 2D phases; (c) V nanoparticles 

on Cu(001) [10]; (d) 2 ML Mn diluted in InAs(001) [7-9]; (e) MnGe(001) ferromagnetic  

                 alloy [31]. Cases (c-e) are simulated with one 2D and one bcc phase. 

 

 The data are well fitted with a single 2D component, yielding the zero temperature Mn 

magnetic moment of ~ 0.9 B, the average spin quantum number ~ 1, and the exchange integral ~ 

3 K. Now, normally for a spin quantum number of 1, the zero temperature magnetization should 

yield 2 B, unless ferrimagnetism is present. In Ref. [29] it was also shown that the surface is very 

quickly contaminated, and extrapolating time-dependent measurements towards the preparation 

moment yielded an hypothetical M(0) close to 2 B. Therefore, the spin moment obtained, close to 

1, is a realistic value and also it may point out on a consistent electron transfer toward the Cu 

substrate, of at least 3 electrons for each Mn atom. Also, the average island size of the Mn 

superstructure is rather low,  ~ 4.6. 

 

b) 1.5 ML of Ni deposited on Cu(001), (1 x 1) reconstruction 

This second example is taken from Ref. [6] and re-analyzed in the framework of the actual 

considerations. The M(T) dependence for 1.5 ML of Ni deposited on Cu(001) and preserving its (1 

x 1) LEED pattern is represented in Fig. 6(b). Note that, according to Ref. [30], Ni forms 2D 
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islands buried under the first surface layer, which is occupied by Cu atoms only. Therefore, a 

technique such as the one we are applying now allows one to derive interesting parameters for 

buried layers, not available by other techniques, such as magnetic force microscopy (MFM). The 

experimental data are well fitted with two 2D phases with low magnetic moments (~ 0.3 and 0.4 

B), for an average spin value of 0.7. It may be shown that such a ratio between the magnetic 

moment and the average spin may come from two ferrimagnetic phases with configurations such 

as (↑↓↑) and (↑↓↑↓↑) where theoretically these rations M(0)/(SB) should have been 2/3 (≈ 

0.4/0.7) and 2/5 (≈ 0.3/0.7). The exchange integral, also, is quite low for both phases, and the 

average island size is similar ( ~ 4.0 and ~ 6.8). By taking into account this average island size, a 

model such as represented in Fig. 7 may be proposed, with constitution of square islands with 

compensated spins, and addition of extra spins, which are responsible for the total magnetic 

moment. For instance, an island formed by 4 x 4 Ni atoms with 7 aligned extra Ni spins will 

produce a net moment of 14B for 23 atoms with average spin quantum number of 1, therefore the 

ratio between the atomic magnetic moment and the average spin is 14/23 ≈ 0.61, to be compared 

with 0.60 obtained from the second phase identified in Fig. 6(b). The first phase, with a ratio of the 

atomic magnetic moment to the average spin of 0.41, may be well simulated as a superposition of 

(4 x 4) cells with 3 and 4 extra atoms, where the computed ratio will be 6/22 ≈ 0.27 and 1/3 ≈ 0.33. 

 
 

Fig.7. Model for the Ni/Cu(001) system. Three 2D islands with fully compensated Ni spins 

are represented, and each island has an extra number of uncompensated Ni spins, 

indicated with black arrows. The remaining sites are occupied by Cu atoms, since latest 

experimental evidence showed that at room temperature deposition Ni is buried under the  

                                                    first Cu single atomic layer. 

 

c) V nanoparticles deposited on Cu(001) 

These data are reported in Ref. [10]. From the M(T) dependence, it was reported that this 

system is ferrimagnetic. In Fig. 6(c), these data are fitted with a combination of two phases, one 

2D and one bcc. Both phases have M(0) moments close to 1 Bohr magnetron, whereas the average 

spin is close to 0.5. This suggests rather a pure ferromagnetic behavior of both phases, composed 

of 2D and 3D bcc phases with typical sizes of 70-130 atoms. Interestingly, the number of atoms in 

a phase doesn't change too much from 2D to 3D. Note also that the exchange integral of the 3D 

bcc phase is much larger (about 11 K, to be compared with 0.5 K). 

 

d) 2 ML of Mn diluted into InAs(001) 

 This system has been discussed in Refs. [7-9], however, without too many considerations 

on the origins of magnetism in Mn diluted in InAs(001). Fig. 6(d) presents this analysis and it 

turned out that it can be again simulated with a 2D component plus a 3D bcc component. (The 

kind of 3D component was chosen by fitting separately with different 3D components and 
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choosing the fit which provided the better results, i.e. the lowest value of 2
.) Both moments are 

quite low for a relatively elevated value of the spin. In fact M(0)/(SB) approaches (2/7) ≈ 0.285, 

which suggest ferrimagnetism with an unit magnetic cell such as (↑↓↑↓↑↓↑). 

 

 e) A thick Mn film deposited on Ge(001) at high temperatures 

This sample was produced by evaporating a thick Mn film (100 nm) onto Ge(001) held at 

350 °C [31]. This system provides room temperature ferromagnetisn; also the superconducting 

quantum interference device (SQUID) curves exhibited differences between the field cooled and 

the zero field cooled M(T) curves. The bigger discrepancies are at around 160 K, where a magnetic 

ISP transition is identified. For the actual evaluation, we used just the low temperature SQUID 

data obtained in the field cooled measurement. This behaviour may be simulated with two phases, 

one 2D and one 3D bcc. Interestingly, in this case the 3D aggregates contain fewer atoms (about 

200) than the 2D islands (over 1,000). 

As a general remark for all cases discussed in this Section, the exchange integrals obtained 

for 2D phases are quite low (on the order of 1 K or below, with the exception of the MnCu surface 

alloy, about 3 K), whereas the exchange integrals J obtained for the bulk phases are much stronger, 

exceeding 10 K, i.e. about 1 meV. Also, one may notice that all the Mn-based ferromagnetic or 

ferrimagnetic system discussed have a Mn magnetic moment at 0 K close to 1 B, corresponding 

to a a single unpaired electron; electron transfer from manganese to its surrounding (Cu(001) 

surface, InAs(001) or Ge(001) crystals) cannot be excluded. 

Finally, we must mention that all the analyzed data are obtained in relatively strong 

magnetic fields: 1 T for MnCu(001) surface alloy, 5 T for Ni/Cu(001) and for InAs(001):Mn, 7 T 

for V/Cu(001), with a lower magnetic field of 0.05 T for Ge(001):Mn. Therefore, we cannot speak 

really about ferromagnetism in these systems, but rather on the spin orientation in strong magnetic 

field, including superparamagnetic behavior. There are few data in literature on low 

dimensionality systems obtained when no magnetic field is applied, i.e. in remanence. In the case 

of the five systems analyzed in this paper, one cannot state that these systems are real 

ferromagnets. Also, one has to take into account the fact that ferromagnetism is a property of a 

large system, whereas the derived sizes for the actual systems are rather low. Therefore, we 

analyzed the dynamics of the spin orientation in an applied magnetic field and not the real 

ferromagnetism of these structures. It was shown that even in presence of applied strong magnetic 

fields, spin waves still manifest in the temperature variation of the magnetization. The magnetic 

interaction energy in an applied field Ba (~ 5 T) is on the order of BBa ~ 0.29 meV ~ 3.3 K. This 

value exceeds the 'exchange integrals' derived for Ni/Cu(001), V/Cu(001)-2D and Mn:InAs(001)-

2D, where 2D stands for the 2D component. Consequently, the linear slopes of these 

magnetization curves are due to superparamagnetism, i.e. orientation of surface spins by the 

applied magnetic field, rather to the exchange interaction. The only case when a surface (2D) 

ferromagnetic component occurs is that of c(2 x 2) MnCu(001) surface alloy, where the 

measurements were performed in an applied field of 1 T, therefore the maximum magnetic energy 

is on the order of 0.67 K, while the derived exchange integral is about 3 K. In turn, the 'bulk' 

components derived for V/Cu(001) and for the two cases of Mn diluted in semiconductors, whose 

exchange integrals exceed 10 K, represent real ferromagnetic behavior. Moreover, the 

considerations from the present paper allows one to extract spin configurations (e.g. such as the 

ones represented in Fig. 7) even for finite systems in presence of applied magnetic fields, without 

ferromagnetism. The spin wave theory is applicable, no matter if the spins are oriented by the 

exchange interaction or by an applied external field. 

 
 
5. Conclusions 
 
Monte-Carlo evaluation of integrals over Bose-Einstein distribution functions have been 

performed, by using exact magnons' dispersion laws for sc, bcc, and fcc lattices for bulk 3D 

systems, and we found that the M(T) law deviates from the Bloch T
3/2

 law. The deviation depends 
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on the crystal structure. The temperature exponent varies between 1.59 for fcc to 1.66 for sc and 

bcc. The case of low size 3D nanoparticles is treated by evaluation of the sum over all possible 

magnon wavevectors, by taking into account that their eigen values are quantified kx,y,z = 

2nx,y,z/(a), where  is the nanoparticle size along any of the three axes and nx,y,z ranges from - /2 

to + /2. More drastically deviations from the Bloch law are obtained for nanoparticles: the 

temperature exponent can increase up to 2.5 for  = 10. Again, the M(T) law depends on the 

crystal structure considered for these nanoparticles. 
For lower dimensionality (2D and 1D) the sum over magnons states of the Bose-Einstein 

distribution function yields a finite result only for finite size systems. The M(T) behavior is 

obtained by direct summation and compared with evaluations by using integrals with a lower 

wavevector cutoff [6]. All the 3D, 2D and 1D computations are simulated with analytical 

functions, such that a direct dependence of M(T) may be obtained by using as input values the size 

of the system , the average spin S, and the exchange integral J. These formulas are useful to 

identify the size, dimensionality and some relevant parameters (S, J) for magnetic systems 

composed by finite nanoparticles. J is not necessarily the ferromagnetic exchange integral, but can 

also be thought as the interaction energy with an applied external magnetic field. 
After a critical review of the feasibility of the experiments and of the reliability of the data 

interpretation, some recent practical data are discussed, allowing one to derive more details about 

the size, interactions and magnetic properties of systems with finite dimensions and variable 

dimensionality. 
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Appendix 1: The basics of the spin wave theory [1] and the first approximation used in the 

derivation 

 

The Heisenberg Hamiltonian - 2J j Sj·Sj+1, by taking into account only nearest-neighbor 

spin interaction, suggest the following exchange magnetic field term acting on one spin from a 

chain Sj: 

                           
B
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SS
B                                     (A1) 

such that the corresponding energy is - j·Bj = -gB Sj·Bj. (j is the magnetic moment of spin Sj, g 

the gyromagnetic ratio, and B the Bohr magneton). The time variation of the kinetic moment ħSj 

is given by: 
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By expressing the magnetic moment j= -gB Sj and the exchange magnetic field Bj into 

(A2) and writing on the three components x, y, z one obtains the following system of non-linear 

equations: 
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Approximation Ap1: Small amplitude spin waves  

 
For small excitations Sj

(x,y)
 << Sj

(z)
 ≈ S, S being the absolute value of the spin, the system 

(A3) can be written as: 
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By looking for plane wave solutions of (A4) on the form Sj
(x,y)

 = (u,v) x exp[i(jka-t)], one 

obtains an homogenous system for u and v. This system has non-vanishing solutions provided the 

following secular equation is satisfied: 
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The dispersion law for magnons follows from solving the secular eq. (A5): 

 

                                 ħ = 4 JS (1 - cos ka)                         (A6) 

 

The solution of system (A4) yields v = - iu, corresponding to precession around the z axis. 

Equation (1) can also be considered as the magnon's dispersion law for a simple one-dimensional 

(1D) lattice. 

 

Appendix 2: Dependence of the parameters of the magnetization curves on the size 

parameter . 

 

3D case  

Simulations (Fig. 2) (A,) = aA,  - bA,  exp(- cA,
 


able A.2.1. 

 

Structure sc bcc fcc 

aA 0.0159475 0.0147378 0.0148048 

bA 0.0185389 0.0178654 0.0182782 

cA 0.0310035 0.0341797 0.0342101 

a 1.79749 1.79478 1.71348 

b 1335284 1.4999 1.45417 

c 0.010155 0.0740162 0.0764983 

 

Low D case 

 

Simulations (Fig. 4, 5(b-d)): (A, x0,  = aA, x
0
, + bA, x

0
, X

cA, x0,  

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Table A.2.2. 

 

Case 2D 1D 

aA 0.000406707 0.0284886 

bA 0.0659214 0.0337071 

cA -0.777788 1.03173 

ax
0
 0.8949 -0.0690785 

bx
0
 38.3496 9.48488 

cx
0
 -1.18523 -1.07531 

a 0.666638 0.018149 

b -3.31232 0.0735865 

c -0.969219 1.19249 

 


