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TREE-LIKE POLYPHENYL CHAINS WITH EXTREMAL DEGREE DISTANCE
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The degree distance of a connected graph G=(V(G),E(G)), denoted by DD(G), is

defined as DD(G) = Z(d (u)+d(v))d(u,v), where d(v) is the degree of the
{uv}eV(G)

vertex v and d(u,v) is the distance between vertices u and v in G. In this paper, we
determine the polyphenyl chains with the maximum and minimum degree distances
among all polyphenyl chains with h hexagons.

(Received March 14, 2011; Accepted April 8, 2011)

Keywords: Degree distance, Wiener index, Polyphenyl chains, extremal graphs.

1. Introduction

Let G be a graph with vertex set V(G) and edge set E(G). For any two vertices x and y in
V(G), the distance between x and y, denoted by d(x,y), is the length of the shortest path connecting
x and y. The degree of a vertex v in G is the number of neighbors of v in G.

Numbers reflecting certain structural features of organic molecules that are obtained from
the molecular graph are usually called graph invariants or more commonly topological indices.
The oldest and most thoroughly examined use of a topological index in chemistry was by Wiener
[1] in the study of paraffin boiling points, and the topological index was called Wiener index or
Wiener number.The conventional generalization of W for an arbitrary molecular graph is due to
Hosoya [2]. The Wiener index of the graph G, is equals to the sum of distances between all pairs

of vertices of the respective molecular graph, i.e., W(G) = Z d(u,v).
UV (e)

The degree distance of a connected graph G=(V(G),E(G)), denoted by DD(G), is

defined [3] as
DD(G)= >.(d(u)+d(v))d(u,v)- From the definition of degree distance, it is easy

{u.viev (G)
to see that DD(G) is a degree analog of the Wiener index. For recent results on degree distance,

the reader is referred to [4-11].
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A kind of macrocyclic aromatic hydrocarbons called polyphenyls and their derivatives has
attracted the attention of chemists for many years [12, 13]. The molecular graphs of polyphenyls
are called the polyphenyl system. A polyphenyl system is said to be tree-like if each vertex of H
lies in a hexagon and the graph obtained by contracting each hexagon into a vertex in original
molecular graphs is a tree. A hexagon h in a tree-like system has at least one and at most six
neighboring hexagons. A hexagon h is said to be terminal if it has exactly one neighboring
hexagon, and said to be branched if it has at least three neighboring hexagons. A polyphenyl
system without branched hexagons is said to be a polyphenyl chain.

In this paper, we shall characterize the polyphenyl chains with the maximum and
minimum degree distance among all polyphenyl chains with h hexagons.

2. Main results and discussion

Two vertices u and v of a hexagon h are said to be in ortho-position if there are adjacent in
h. If two vertices u and v are at distance two, then they are said to be in meta-position, and if two
vertices u and v are at distance three, then they are said to be in para-position. Examples of
vertices in the above three types of positions are illustrated in Fig. 1.
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Fig. 1. ortho-, meta-, and para- positions of vertices in h.

An internal hexagon h in a polyphenyl chain is called a ortho-hexagon, meta- hexagon,
or, para- hexagon if two vertices of h incident with two edges which connect other two hexagons
are in ortho-position, meta-position, para-position, respectively. A polyphenyl chain of h

hexagons is ortho- PPC, and is denoted by O, , if all its internal hexagons are ortho-hexagons.
In a fully analogous manner, we can define meta- PPC, ( denoted by M, ) and

para- PPC, (denoted by L, ). See Fig. 2 for ortho- PPC, , meta- PPC, and para- PPC, .

ortho-PP(C —\ /— <_> _\ /_ / 3

meta—PPC O_O_O_O_O_O

Fig. 2. ortho-, para-, and meta-Polyphenyl chains with six hexagons.
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Fig. 3 Three ways of inserting a hexagon between two polyphenyl chains A and B.

Concerning the Wiener index of polyphenyl chains, Bian and Zhang obtained the
following result.

Theorem 1([14]). Let G, be a polyphenyl chain with h hexagons. Then
W(0,) <W(G,) <W(L,),
where the left-hand side equality holds in the above inequality if and only if G, = O,

and right-hand one holds in the above inequality if and only if G, = L, .

According to the definition of Wiener index (W(G)) and degree distance (DD(G)), one can
deduce an explicit relation between W(G)) and DD(G) when G is a polyphenyl chain.

Proposition 1. Let G, be a polyphenyl chain with h hexagons. Then

DD(G,) =4W (G,) +W,(G,) + 2W,,(G,),

where W, (G,) = D d(u,v)and Wy(G,)= > .d(u,v).
UMV (Gy) {uVV (Gy)
d(u)=2,d (v)=3, d (u)=d (v)=3
or,d (u)=3,d (v)=2

Proof. According to the definition of  degree distance, we have

DD(G)= ) (d(u)+d(v))d(u,v)

vV (@)
=4 >duv+s  Dduv)+6 > d(u,v)
{u VIV (Gy) {uMV (Gy) U}V (G,)
d(u)=d (v)=2 d(u)=2,d(v)=3, d(u)=d (v)=3

or,d(u)=3,d(v)=2

=4W (Gh) +W23(Gh) + 2W33(Gh)'
This completes the proof. =

Corx e

Fig.4 The graph used in Lemma 1.

For j=2, 3, we let n;(H) be the number of vertices of degree j in a graph H and let d)(x) be
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the sum of distance between a vertex x and all vertices of degree j in H. By means of these notation,
we thus have:

Lemmal. Let G be a connected graph as shown in Fig. 4 with G, —{u}and G, —{u}being

two connected components of G —{u}. Then we have

i) W..G) Wy3(Gy) + Wy (G,) + 1y (G, —{updg (u) +n, (G, —{updg, (u) +
). W = ,
N, (G, —{updg, (u) + ny(G, —{u})dg, (u)
Wy3(Gy) +Wy3(G,) +
(i). W,(G )= s , .
{n3(Gz —{u}dg, (u) + ny (G, —{u})dg, (U)}

Proof. We only prove (i) here. The proof of (ii) can be conducted by the same way.

Wa3(G ) =Wy5(Gy) + Wiy (G,) + Z Z d(xy)+ z Zd X, Y)

XEV(Gl)_{u}yEV( 2)Hu} xeV (G;){u} er( 2)-u}
d(x)=2 (y)=8 d(x)=3 (y)=2

=W, (G)+W,(Gy)+ Y. > (dxu)+d(uy)+ > D (d(xu)+d,y)

xeV (Gy)—{u} yeV (G,){u} XEV(GlHu}VEV(GzHu}
d(x)=2 d(y)=3 d(x)=3 d(y)=2

=W, (G) +W,(G,) + Y [n:(G, —fuh)d (x,u) +dg _, (u)]+
1V (G)-{u}
d(x)=2

2.[n,(G, ~{up)d (x,u) + dg,_g, (U)]

xeV (Gy){u}

d(x)=3

=Wy, (G,) + W, (G,) +ny (G, —{u})d¢ G,-{u} (u) +n,(G, _{U})dgz{u} (u) +
,(G, ~{uPdg g () + (G, ~{u})dg, (W)

=W23 (Gl) +W23 (Gz) Ny (Gz —{U}) G (U) +N, (Gl _{u})dé2 (U) +

,(G, ~{up)dg, (u) +ny (G, —{u})de, (u),

as desired. =

In the following two theorems, we shall deduce two results similar to Theorem 1 w. r. t. the

extremal values of W,, and W,, for a polyphenyl chain.

Theorem 2. Let G, be a polyphenyl chain with h hexagons. Then
W, (O,) SW,;(G,) W, (L),

where the left-hand side equality holds in the above inequality if and only if G, =0, and
right-hand one holds in the above inequality if and only if G, = L, .

Proof. Let A and B be two polyphenyl chains such that the number of hexagons in these two

chains add up to n—1. Obviously, there are three ways of inserting a hexagon between them and
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eventually forming a polyphenyl chain with h hexagons. Denoted by AOB, AMB and APB,
respectively, the resulting polyphenyl chains upon the case when the inserted hexagon is an ortho-,
a meta- , or a para-hexagon.

According to Lemma 1, we have

W, (APB) =W (A) + W,y (C,) +1, (C, —{v,})d 2 (v,) +1, (A_{V1})dg1 (V) +
n, (Cl _{Vl})di(vl) + n3(A—{v1})d§1 (Vl)'

From Fig. 3, one can deduce that
ny(C, —{v,}) =n;(B) + 2
n, (A _{Vl}) =N, (A)
n, (Cl _{Vl}) = nz(B) +4
n3(A_{V1}) = ns(A) -1
Also, we have
Wa3(C;) =Wos (B) + Wy (D;) + 1y (B—{v, })d él (v,) +1, (D, ~{v, })d;3 (v,) +
N, (B _{Vz})dg1 (Vz) +Ny (Dl _{Vz})dé (Vz)a

Ny (B —{v,}) =n,(B) -1
n,(D, —{v,}) =n,(D,) = 4 d, (v;) =10
n,(B—{v,}) =n,(B) {dgl(vz) =10’
ny(D; —{v,}) =ny(D;) -1=3
Hence, we have
W, (APB) =W, (A) + W, (B ) +22+10(n, (B) +n,(B)) +4d3 (v,) +3d3 (v,) +
(n5(B)+2)d 4 (v;) +n,(A)d3 (v,) + (n, (B) + 4)d 5 (v,) + (n;(A)-D)d 5 (v,) +
5n, (A)(n,(B) +1) +5(n, (B) +2)(n,(A) -1).
By the same reasoning, we have
W, (AMB) =W, (A) +W,,(B ) +36 +11(n,(B) —1) +8n,(B) + 4d3(v,) + 3d2(v,) +
(n5(B) +2)dx (v,) + Ny (A)d3 (v,) + (0, (B) + 4)d 3 (v,) + (ny (A) —Dd5 (v,) +
4n, (A)(ny(B) +1) + (4n,(B) +11)(n,(A) - 1)
and
W,,, (AOB) =W, (A) +W,; (B ) +36+12(n,(B) 1) +6n,(B) +4d3 (v,) +3d2(v,) +
(n5(B)+2)d 4 (v;) +n,(A)d3 (v,) + (n, (B) +4)d 5 (v,) + (n;(A)-D)d; (v,) +
3n, (A)(n,(B)+1) +3(n, (B) +4)(n,(A) -1).

dgl(Vl) =95+ Z[d(vzy y)+5]= 5+5n3(B) +d§(vz)
yeB
d(y)=3

dZ (v,) =10+5n,(B) +d2(v,)

and W, (D,) =32.

An elementary calculation gives W,,(AOB) <W,,(AMB) <W,,(APB) . Now, we
conclude that a polyphenyl chain with the maximum possible value of W,, can not have an

ortho-, or a meta-hexagon. Similarly, a polyphenyl chain with the minimum possible value of W,,

can not have an meta-, or a para-hexagon. This completes the proof. =
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Theorem 3. Let G, be a polyphenyl chain with h hexagons. Then
W, (O,) SW,,(G,) W, (L),

where the left-hand side equality holds in the above inequality if and only if G, =0, and
right-hand one holds in the above inequality if and only if G, = L, .

Proof. Let AOB, AMB and APB be the polyphenyl chains introduced as in Theorem 2. Analogous

to Theorem 2, we have
W, (APB) =W, (A) +W,,(B ) +18+10(n,(B) - 1) +3d§(v2) +
(n5(B) +2)d 5 (v,) + (ny (A) —1)d; (v,) +5(ny (B) + 1) (ny(A) -1),

W, (AMB) =W, (A) +W,, (B ) +14+8(n,(B)-1) +3d3 (v,) +
(n;(B) +2)d; (v,) +(n; (A) ~1)d3 (v,) +4(ny (B) +1)(n (A) 1),
and

W, (AOB) =W, (A) +W,, (B ) +10+6(n,(B) —1) +3d3(v,) +
(n;(B) +2)d5(v;) + (n(A) ~1)d5 (v;) +3(ny(B) +1(ny (A) - 2).

By an elementary calculation, we have W,,(AOB)<W,,(AMB)<W,,(APB) . Now, we
conclude that a polyphenyl chain with the maximum possible value of W,, can not have an

ortho- or a meta-hexagon. Similarly, a polyphenyl chain with the minimum possible value of W,,

can not have an meta- or a para-hexagon. This completes the proof. =

Now, we are in a position to state and prove our main result of this paper.

Theorem 4. Let G, be a polyphenyl chain with h hexagons. Then
DD(O,) <DD(G,) < DD(L,),

where the left-hand side equality holds in the above inequality if and only if G, =0, and
right-hand one holds in the above inequality if and only if G, = L, .

Proof. In view of Theorems 1, 2 and 3, we have

W23(Oh) SWZS((Bh) SW23(Lh) '
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W33(Oh) <Wa, (Gy) < W33(Lh) .

W(O,)<W(G,)<W(L,).
Combining Proposition 1 and the above three inequalities, we have actually obtained our desired

result. =
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