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The kinetic parameters of two overlapping crystallization peaks of Si10Te90 chalcogenide 

glass were studied using differential scanning calorimetry (DSC). The present study was 

conducted under experimental non-isothermal and predicted isothermal conditions. The 

experimental data were analysed using the Friedman differential isoconversional method. 

The dependence of the effective activation energy of crystallization on the extent of the 

crystallization indicates a clear difference between the two peaks. The Avrami–Erofeev 

reaction model reaction may describe the crystallization process of the two peaks of the 

chalcogenide glass under investigation. The reaction model of the first peak was found to 

be independent of temperature and was nearly equal to A6. However, the reaction model 

for the second peak varies from A2 to A6 as the temperature increases from 300 to 350 K. 
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1. Introduction 
 

The growing interest in chalcogenide glasses has been partially stimulated by their 

interesting electrical and optical properties and hence their wide scientific and technological 

applications. These properties are typically connected via crystallization. In chalcogenide glassy 

systems, glasses undergoing exothermic crystallization above the glass transition temperature 

appear to be of the memory switching type. Memory switching arises from the boundaries of 

glass-forming regions where glasses are more likely to crystallize [1-7]. Many glasses based on 

silicon-tellurium (Si-Te) system exhibit switching phenomena. Hence, crystallization of the Si-Te 

binary system has been intensely investigated [8-14]. 

Continuing our previous work [15,16], we study the crystallization kinetics of a system 

that exhibits a single, well-defined broad peak and was formed by the overlapping of two 

exothermic crystallization curves. In this work, the kinetic parameters (i.e., the activation energy 

E, the pre-exponential factor A and the Avrami exponent n) of the two overlapping Si10Te90 

crystallization peaks were studied using differential scanning calorimetry (DSC), under non-

isothermal conditions for a wide range of heating rates (5–90 K min
−1

). The kinetic parameters 

were calculated from the DSC data using AKTS-Thermokinetics software [17] and 

isoconversional (model-free) analyses. 

 

 

2. Experiment 
 

Melt-quench technique was used to prepare the bulk material of Si10Te90 chalcogenide 

glass. High-purity (99.999%) Si and Te in proper at.% quantities were weighed and sealed in a 

quartz-glass ampoule (12 mm diameter) under a vacuum of 0.01 Pa. The ampoule was heated up to 

1,220 K for 24 h in a rocking furnace then quenched in ice water.     

_________________________________                                                                                 
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The DSC experiments were carried out using a Shimadzu DSC-50 differential scanning 

calorimeter with an accuracy of  10 W . A small bulk samples (5 mg) were sealed in aluminum 

pans and scanned under dry nitrogen atmosphere at a rate of
150 ml min
 and selected heating 

rates   of 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, and 90 1K min . Indium 

 1
m m429.6 K, = 28.55 JgT H    at a heating rate of 10 K min

-1
 was used to calibrate the 

temperature and enthalpy. Specific heat treatment was not used to nucleate the samples prior to the 

thermal analysis run. 

The kinetics analysis in this study was conducted using the advanced thermokinetics 

software from Advanced Kinetics and Technology Solutions, Switzerland (AKTS-Thermokinetics 

ver. 4.02) [17]. Calculations with AKTS software increases the accuracy of the estimated kinetic 

parameters because it is simultaneously optimizes the baseline of data curves. The software applies 

isoconversional method for kinetic analysis. 

 

 

3. Theoretical background 
 

The crystallization reaction rate equation is usually based on the temperature T and 

conversion fraction (reaction progress) α. The kinetic equation combined with the Arrhenius 

expression is [18-20]: 

   
 

 
d

 exp  
d

E
k T f A f

t RT t

 
      

 
,   (1) 

 

where k is the reaction rate constant, t(s) is the time, f() is the reaction model, A(s
-1

) is the pre-

exponential (frequency) factor, E (kJ mol
-1

) is the effective activation energy and R is the universal 

gas constant. The three parameters associated with the energy barrier, the frequency of vibrations 

of the activated complex, and the reaction mechanism are the pre-exponential factor A, the 

effective activation energy E, and the reaction model f(α), respectively. Together, these are 

referred to as the "kinetic triplet". The crystallization process is generally well understood when 

the kinetic triplet is known. 

The isoconversion method can be used to obtain accurate and consistent kinetic 

information for both nonisothermal and isothermal processes. This method implies that the 

reaction rate at a constant conversion, α, is a function of temperature only. By taking the 

logarithmic derivative of the reaction rate given by Eq. 1 at α = constant, we obtain: 
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,   (2) 

 

The conversion fraction α and the reaction model f() are constant, and thus, the second 

term on the right-hand side of Eq. 2 is zero. Thus, 

 

 

 
 

1

ln d dt E

RT 



   
   
 
 

.    (3) 

 

Hence, the use of isoconversional “model-free” method to extract the effective activation 

energy E(α) does not require any sort of the reaction model f(α).  

The differential isoconversional approach of Friedman [21] can be obtained by taking the 

logarithm of the conversion rate dα/dt as a function of the reciprocal temperature at any conversion 
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α. For various heating rates i  and at a specific degree of conversion  , the Friedman method is 

given by [19-21] 

  
i i

d
ln ln  

d

E
A f

t RT




 

 
   

 
.                           (4) 

 

Therefore, plotting of  ln d dt  against 1 T  is a straight line with a slope m = -E/R 

and an intercept equal to   ln  A f  . 

 

 

4. Results  
 

The experimental measurements were conducted at heating 5, 10, 15, 20, 25, 30, 40.50, 

60.70, 80 and 90 90 K min
-1

. Results indicated the presence of one exothermic broad peak between 

540 and 650 K for all heating rates. Fig. 1 shows the DSC curves obtained. When the DSC 

thermographs show a single well-defined broad crystallization peak, the probability of overlapping 

between two or more curves cannot be ignored. At heating rates of < 20 K min
-1

, the crystallization 

curve consists of two peaks. As the heating rate increases to > 30 K min
-1

, these two peaks merge 

into one peak. Figs. 2a, 2b and 2c show examples of the separation of overlapped crystallization 

exothermal curves recorded at constant heating rates of 5, 25 and 90 K min
-1

, respectively. 

Henceforth, the first and second peaks are designated as P1 and P2, respectively. 

 

 
 

Fig. 1. Typical DSC trace of amorphous Si10Te90 glasses at  = 5-90 K min
-1

. 

 

 
5. Discussion 
 

The results of the derived percentage contribution of the separated peaks to the total curve 

area shown in Fig. 2 were found to be highly similar for all heating rates and equal to 44% and 

56% for P1 and P2, respectively. The observed non-symmetric DSC crystallization peaks of 

Si10Te90 suggest multiphase crystallization. 

Deconvolution of the DSC crystallization peak showed two individual peaks with distinct 

maxima temperature, TP1 and TP2 for P1 and P2, respectively. 

Under these situations, the DSC crystallization peak was treated as a convolution of two 

individual peaks with distinct maxima temperature, TP1 and TP2 for P1 and P2, respectively. The 

occurrence of double glass transition and double-stage crystallization in SixTe100-x glasses with 

10 20x   was demonstrated previously [8]. The phenomenon of double-stage crystallization 

was found to occur in a variety of chalcogenide glasses, such as Ge-As-Se-Te [22], Ge-Te-Sb [23], 

540 560 580 600 620 640

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

540 550 560 570 580 590 600

0.00

0.04

0.08

0.12

0.16

D
S

C
 (

m
W

 g
-1
)

T (K)

  K min
-1

 5

 10

 15

D
S

C
 (

m
W

 g
-1
)

T (K)

 K min
-1

 5

 10

 15

 20

 25

 30

 40

 50

 60

 70

 80

 90



82 

 

Ga-Sb-S [24], Se-Te-Ag [25], Se-Ge-Pb [26], Se-Te-Sn [27] and Se-Te-Sb [28]. The phenomenon 

of double crystallization peaks is a direct result of the phase separation occurring in glasses [8]. An 

example of the results of the deconvolution are displayed in Fig. 2 (a, b and c), with the solid line 

representing the Gaussian function of (P1) and (P2). The peak of the first change (P1) was 

observed between 553 and 611 K for a heating rate of 5–90 K min
-1

, and the peak of the second 

change (P2) was observed between 570.5 and 619 K for the same heating rate range. 

 

 
 

Fig. 2. Example of the separation of overlapped crystallization exothermal curves  

recorded at a constant heating rate of 5, 25 and 90 K min
-1

 

 

 

5.1 Effective activation energy for crystallization 

This section discusses the kinetic analysis of crystallization events for the two peaks. To 

calculate the effective activation energy E for the crystallization, the Friedman equation (Eq. (4)) 

was used over a conversion range of 0 5.   at different heating rates i . The plots of 

 
i

ln d dt


  against 3

i10 T
 are shown in Fig. 3 for both peaks (P1 and P2). The data can be 

fitted into a straight line for both peaks (P1 and P2), leading to two different values of the effective 

activation energy for crystallization, 123.9 and 144.7 kJ mol
-1

 for P1 and P2, respectively. The 

dependences of the experimental value of the effective activation energy of crystallization E  and 

of the experimental value of   ln  A f 
 
on the extent of crystallization  , obtained using Eq. 

4 for the two peaks (P1 and P2), are shown in Fig. 4. 

The plot of activation energy for crystallization E  revealed a clear difference between 

the two peaks (P1 and P2) with respect to the reaction progress . For (P1), the activation energy 

E  is mostly independent of the value of , only exhibiting somewhat sudden small changes in 

the terminal stage of the crystallization. However, the second peak (P2) is characterized by a sharp 

decrease in E  with the reaction progress ; this decrease continued toward the end of the 

reaction and was followed by a small increase at 0.8  . The behaviour of  E   for P1 and P2 

is in good agreement with the results of our previous study, where the first and second peaks were 

clearly separated [15]. 
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Fig. 3. Plots of  
i

ln d dt


  against 
3

i10 T
 for the P1 and P2 peaks 

 

 

 
 

Fig. 4. Dependence of the activation energy of crystallization E and of the experimental  

  ln  A f   values on the extent of crystallization   

 

 

The pre-exponential factor A(s
-1

) was expressed as   ln  A f   for the two peaks. The 

dependence of the activation energy for crystallization E , on the temperatures for the two peaks 

(P1 and P2) is shown in Fig. 5. The values of E  remain fairly constant throughout the entire 

temperature interval for P1. In contrast, the E  values for P2 show a strong temperature 

dependence. 

 

 
 

Fig. 5. Dependence of the activation energy of crystallization E on the temperature. 
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The value of E  decreases from approximately 170 kJ mol
-1

 at T=561 K to 92 kJ mol
-1

 at 

629 K. Such high variations in the activation energy with temperature gave evidence that the rate 

constant of the crystallization is determined by the rates of two processes: nucleation and diffusion 

[15,29]. However, due to the dependence of E  on temperature, for P1, the value of E  
at 

0.5   is approximately 124.3 kJ mol
-1

, which is close to the value of 123.9 kJ mol
-1

 obtained 

using the Friedman plot shown in Fig. 3. Additionally, for P2, the value of E  
at 0.5   is 

approximately 104.6 kJ mol
-1

, which is lower than the value of 144.7 kJ mol
-1

 obtained using the 

Friedman plot discussed above. 

 

5.2 Prediction of the reaction progress under isothermal conditions 
Because the activation energy and pre-exponential factor of the examined materials were 

determined from nonisothermal experiments, the extent of the reaction progress  could be 

determined under any temperature mode, including the isothermal mode [30-35]. The predictions 

for the isothermal conversion fraction  of P1 and P2 for the samples under investigation are 

shown in Fig. 6. 

However, a combination of nonisothermal and isothermal experiments is one of the most 

accurate techniques to determine the kinetic parameters [19]. The isothermal crystallization 

kinetics of Si10Te90 glasses were analysed based on the well-known Avrami equation [36-38]. The 

double logarithmic form of this equation is given as: 

 

 tln ln 1 ln lnn k n t      ,    (5) 

 

where n is the Avrami exponent and k is the overall kinetic rate constant. Both k and n depend on 

the nucleation mechanism and growth geometry. The values of n and k are determined from Eq. 

(7) by least squares fitting of  tln ln 1     versus ln t . The double natural logarithmic plots 

for the Avrami analysis are shown for the first and second peaks at different crystallization 

temperatures in Fig. 7. The obtained values of the Avrami exponent n and overall kinetic rate 

constant k are shown in Fig. 8. 

 

 
 

Fig. 6. Predicted isothermal crystallization fractions  over time for different temperatures 
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Fig. 7. Plots of  tln ln 1     versus lnt  for the predicted isothermal crystallization 

 fractions, , at different temperatures 

 

 

The Avrami exponents indicate that the mechanism of crystallization for P1 is mainly that 

of multi-dimensional growth, with an average n value of 5.5. The unexpectedly high value of the 

Avrami exponent (n = 5.5) arises because both the nucleation frequency and crystal growth rate 

exhibit a power law dependence on time [15,39,40].  

Generally, n should not exceed 4; nevertheless, high values of n have been reported for some 

systems [34]. The value of n for P2 shows a strong temperature dependence, with an average n 

value of 3.8. 

 

 
 

Fig. 8. Dependence of the Avrami exponent n on the temperature obtained from isothermal 

and nonisothermal conditions. The figure also shows the  overall  kinetic  rate  constant k  

against temperature. 

 

 

It is recommended to compare the isothermal prediction results with those calculated using 

the nonisothermal equation suggested by Matusita et al. [41]. The Avrami exponent n can be 

obtained using this equation as [35]: 
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As is evident from Fig. 8, the predicted and actual experimental results are nearly 

identical. The nonisothermal values of the Avrami exponent n are somewhat higher than the 

isothermal values. The average values of n for P1 were found to be 5.5 0.3  and 5.7 0.3  for 
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the isothermal and nonisothermal methods, respectively, whereas for P2, the average values were 

found to be 3.6 0.2  and 4.5 0.3  for the isothermal and nonisothermal methods, respectively. 

The details of the crystallization process was investigated by using the local Avrami exponent 

 n  , which is given by [15,35]: 

 
 tln ln 1

ln
n

t

     
 


.     (7) 

 

The value of  n   offers information associated to the nucleation and growth behaviour 

for the reaction progress . The values of  n   at different temperatures for P1 and P2 as a 

function of the conversion fraction  are shown in Fig. 9.  

 

 
 

Fig. 9. Local Avrami exponent n() versus the crystallized fraction  at different temperatures. 

 

 

Table 1. Solid-state reaction models of Avrami-Erofeev used to describe the crystallization process. 

 

Model Notation  g   Avrami exponent, n 

A1.5  
2 3

ln 1      1.5 

A2  
1 2

ln 1      2 

A3  
1 3

ln 1      3 

A4  
1 4

ln 1      4 

 

 

The  n   values clearly decreased with an increasing conversion fraction  for each 

temperature range and decreased with increasing temperature. The average local Avrami exponent 

 n   values were found to be 5.7 and 4.3 for P1 and P2, respectively, in good agreement with 

the values discussed above. However, comparing Figures 8 and 9, the Avrami exponent n shows a 

dramatic difference between P1 and P2. For P1, n decreases slightly with increasing temperature 

or reaction progress, and its value remains high at approximately 5.5. This indicates that the 

crystallization of P1 is mostly governed by three-dimensional growth. In contrast, for P2, the 

Avrami exponent strongly decreases with increasing temperature or reaction progress, and its 

value varies between approximately 5 and 2. 

To verify the existence of the deduced dimensional growth, the crystallization process is 

described by using the reduced reaction model  g   (Table 1). The conversion fraction (reaction 
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progress)  depends on several factors, such as nucleation, diffusion and geometrical shape. These 

factors led to the development of many solid-state reaction models. In particular, the Avrami-

Erofeyev model is shown in Table 1 [18-20,34,35]. The reduced reaction model  g   for 

isothermal kinetics is given by [34,35,42,43] 

 

 
0 632.

t
g B

t




 ,     (8) 

where B is a constant equal to one and dependent on the form of function  g  . The time 

required to reach a specific reaction progress t   was calculated at 0.632  because the reduced 

activation energy  E RT  approaches infinity at this value [34,35]. 

We use the  g   values obtained using experimental data and Eq. 8 and the values 

obtained by theoretical models obtained from Table 1 to generate Fig. 10; this figure shows the 

plot of  g   versus the conversion fraction . The reactions models for both peaks P1 and P2 

undoubtedly follow the Avrami–Erofeev mechanism. On the other hand, for P1 and in the case of 

solid-state reaction models, the analysis clearly indicates that the mechanism is strictly constant 

and is A6 for the entire range of examined temperatures (280-330 K); with the exception of the 

end of crystallization  0.8  , the mechanism remains confined between 4 6A  . 

Nevertheless, for P2, the behaviour of the Avrami–Erofeev mechanism is dramatically different, as 

is clearly shown in Fig. 10. At low temperatures (300 K), the mechanism is nearly A6. As the 

temperature increases, the mechanism tends toward lower values and is almost A2. 

 

 
 

Fig. 10. Variation of the reduced reaction model  g   with the degree of crystallization  

 for P1 and P2. The solid lines were calculated from the various theoretical 

 models listed in Table 1. 

 

 

Finally, Fig. 11 shows the sigmoidal shapes for the crystallization fraction for P1 and P2 

of both the experimental and simulated results. Fig. 11 confirms the reliability of the obtained 

results because the experimental and simulated results are nearly identical. 
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Fig. 11. Typical experimental and predicted results for the crystallization fraction sigmoidal 

 shapes obtained at heating rate regime of = 5-90 K min
-1

 for P1 and P2. 

 

 

6. Conclusions 
 

In this study, two overlapping chalcogenide glass Si10Te90 crystallization peaks were split. 

The kinetics’ parameters were studied under experimental nonisothermal and predicted isothermal 

conditions. The differential isoconversional (model-free) method of Friedman was used to 

calculate the kinetic parameters. The average effective activation energy values obtained for the 

first and second peaks (P1 and P2) were 123.9 and 144.7 kJ mol
-1

, respectively. The activation 

energy  E   values show a nearly constant variation throughout the entire interval of 

transformations for P1, in contrast to the values for P2, which show a strong dependence on the 

conversion fraction and temperature.  

The variations of the pre-exponential factor A and Avrami exponent n with the conversion 

fraction and temperature were investigated. The isothermal and nonisothermal methods were used 

to calculate the Avrami exponent n. The average n values for P1 were found to be 5.5 0.3  and 

5.7 0.3 , whereas for P2 these were found to be 3.6 0.2  and 4.5 0.3  for the isothermal and 

nonisothermal methods, respectively. 

The Avrami–Erofeev solid-state reaction model may accurately describe the 

transformation process of Si10Te90 chalcogenide glass for both P1 and P2. However, for P1, the 

model was found to be independent of temperature and follows the A6 mechanism, whereas for 

P2, the reaction model varies from A6 to A2 with increasing temperature.  

 The obtained kinetic parameters were accurate, as shown by the good agreement between 

the actual and predicted sigmoidal curves for the crystallization fraction with increasing 

temperature. 
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