
Digest Journal of  Nanomaterials and Biostructures                           Vol. 8, No. 1, January - March 2013, p. 81 - 87 
 
 

 
 

MOLECULAR DYNAMICS ANALYSIS OF BONE MORPHOGENETIC 
PROTEIN-2 CONFORMATIONS AND MECHANICAL PROPERTIES 

 
 

IULIANA APRODUa, IULIANA BANUa, ADRIAN ISTRATEa, EUGENIA 
VASILEb, ANDREEA MADALINA PANDELEb, EUGENIU VASILEc, 
MARIANA IONITAb* 
aDunarea de Jos University of Galati, Galati, 8002001, Romania 
bUniversity Politehnica of Bucharest, Bucharest, 060042, Romania  
cMetav CD, Bucharest, 020011, Romania 
 
 
The knowledge of the dynamics and conformational particularities of bone morphogenetic 
protein-2 (BMP-2) are important for predicting its bioactivity in the process of osteoblasts 
differentiation and proliferation while using it in bone implants and scaffolds. Molecular 
dynamics simulations were performed to investigate the conformational stability of bone 
morphogenetic protein-2 in water environment at temperatures resembling the room and 
human body conditions. According to our results, BMP-2 behaviour is slightly influenced 
by small temperature fluctuations. The temperature increase caused the reduction of the 
strands and the increase of helices content. In addition steered molecular dynamics 
simulations were performed to stretch the protein up to 10% elongation and the results 
indicate that BMP-2 exhibits a more rigid behaviour at room temperature. 
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1. Introduction 
 
Because of the large number of degenerative disc disease, osteoarthritis, and osteoporosis, 

most of the latest researches on orthopaedic field were focused on different alternatives for bone 
grafting [1].  

Bone tissues have good regenerative abilities in normal physiological conditions of the 
human body. The success of tissue engineering highly depends on the progress in the field of 
biotechnology of morphogenetic factors and biomaterials. Tissue engineering experiments 
consisting on the replacement and regeneration of lost or destroyed tissues, require precursor cells 
from the patient with scaffolding matrices and the stimulus of growth factors [2]. One of the most 
important growth factors in bone formation and healing are bone morphogenetic proteins (BMPs) 
[2-3]. The three-dimensional structures of BMPs from various sources have been determined 
mainly by X-Ray diffraction and different forms were found to share certain similarities. Among 
BMPs, most of the solved structures are related to bone morphogenetic protein-2 (BMP2) which is 
a highly conserved homodimeric protein of about 70 Å x 35 Å x 30 Å size [4]. In animal cells the 
BMP2 molecules is glycosilated, probably at ASN56 residue [5]. It has been shown that BMP2 is 
osteoinductive and to potently induce osteopath differentiation in different types of cells [6]. Each 
monomer have a thick part in the middle corresponding to one β-sheet layer, and contains a 
cystine-knot consisting on six cysteine residues that interact to form three disulfide bridges (Cys14-
Cys79, Cys43-Cys11 and Cys47-Cys113). The cystine-knot plays important role in BMP2 structure 
stabilization, as the protein lacks the common hydrophobic core [4, 7].                 
_______________________________________                                                                                    
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In order to better understand the morphogenetic signal and host cells response in bone 
regeneration, the knowledge of BMPs at single protein level is very important. The present work 
consists of a computational study focused on conformational particularities of BMP-2 and its 
mechanical response to external forces. The protein behaviour at different temperatures was 
estimated at single molecule level, using the in silico approach. In the last years the molecular 
dynamics (MD) simulations have been widely used to study biomolecules behaviour [8] therefore 
allowing deeper understanding of different phenomena related to molecular motion or interactions. 

 
 
2. Materials and methods 
 
2.1 Molecular model 
 
The crystal structure of human bone morphogenetic protein-2 was obtained from the 

Brookhaven Protein Data Bank. The atomic coordinates of 3BMP.pdb at 2.7 Å  resolution [4] 
were used to investigate the conformational particularities of BMP-2.  

The gene sequence P12643 (UniProtKB/Swiss-Prot) obtained from Homo sapiens have 
provided the primary structure for the protein. The chosen structure was refined before use by 
removing the (4S)-2-methyl-2,4-pentanediol which is not present under physiological conditions 
and all water molecules.  

 
2.2 Numerical set-up 
 
Gromacs 4.5.5 software [9] with the GROMOS96 43a1 force field was used to perform all 

energy minimizations and molecular dynamics (MD) simulations in parallelization conditions on a 
Intel(R) Core(TM)2 CPU 6300 1.86 GHz processor-based machine running Linux.     

The protein was first energy minimized in vacuum to ensure that the investigated molecule 
was free of strongly repulsive non-bonded contacts or geometric distortions inconsistent with the 
potential energy function [10].  

The minimized structure was centred in a rectangular box of 79.12 Å x 79.12 Å x 79.12 Å 
with periodic boundary conditions, and the rest of the box was filled with single point charge 
(SPC) explicit water molecules to model the protein-water interactions. The final system 
consisting of 49033 atoms (including 15992 water molecules) was afterwards prepared for the MD 
steps by performing an additional energy minimization.  

Both energy minimization steps were carried out using the following two algorithms in 
sequence: steepest descent and limited-memory Broyden-Fletcher-Goldfarb-Shanno. 

To understand the atomic details of the BMP-2 behaviour, different MD steps were 
performed to gradually increase the temperature to 25 and 37°C by coupling each component of 
the system (protein and water molecules) to a Berendsen thermostat for 100 ps. A 1 ns 
equilibration step was then performed to remove any potential temperature and energy oscillations 
of the system heated at the above mentioned temperatures.  

The time step used in all MD simulations was 0.001 ps; the electrostatic interactions were 
treated with the Particle-Mesh-Ewald (PME) method with a Coulomb cut off of 1.7 nm, Fourier 
spacing of 0.12 nm and a fourth order interpolation; the van der Waals’ interactions were treated 
using Lennard-Jones potential and a switching function with a cutoff distance of 1.1 nm and a 
switching distance of 0.9 nm. 

The structural particularities of the equilibrated systems were investigated by means of 
PDB sum tool. 

 
2.3 Mechanical characterization of BMP-2 
 
The models equilibrated at 25 °C and 37 °C were further used for the evaluation of the 

mechanical properties of BMP-2. The set up used was inspired by the in vitro experimental 
techniques. The protein was stretched up to 10% elongation by performing Steered Molecular 
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analysis [16] indicate that this residue have low values for the absolute deviation from mean of 
Chi-1 value and omega torsion. No hydrogen bonds involving Phe41 could be identified in the 
structures equilibrated at 25 and 37oC. 

Although the total number of helices formation is the same at tested temperatures, only the 
~15 Å long helix (Asn59-Asn68) could be identified in both structures due to the low stability the 
helices. Moreover, at human body temperature the right-handed 3-10 helix structure disappears.  

The content of unordered secondary structure varied significantly with the temperature; a 
13.2% decrease of the elements of regular secondary structure was obtained at human body 
temperature with respect to the room temperature.  
The unordered secondary structure was dominated by the beta turns motifs: the total number of 
beta turns decreased from 13 at 25 oC to 12 at 37 oC, whereas the number of gamma turns 
increased from 1 to 7.  
 

Table 2. Secondary structure details of BMP-2 model equilibrated at 25 oC and 37 oC 
 

 25 oC 37 oC 
Beta sheets 3 antiparallel beta sheets: A with 2 

strands (Lys15-Val21; Tyr38-His44), B with 
3 strands (Ile32-Ala34; Leu84-Tyr91; Val99-
Val108) and C with 2 strands (Cys78-Pro81; 
Cys111-Arg114) 

3 antiparallel beta sheets: A with 2 strands 
(Lys15-His17; Tyr42-His44), B with 2 strands 
(Val80-Leu84; Val108-Gly112) and C with 2 
strands (Ile87-Leu92; Val98-Tyr103) 

Strand (%) 40.6 26.4 
No. of helices 2 (Asp53-Leu55; Asn59-Asn68) 2 (Phe23-Val26; Asn59-Asn68) 
α-helix (%) 9.4 13.2 
3-10 helix 
(%) 

2.8 0.0 

 

Table 3. Structural indicators of BMP-2 model equilibrated at 25 oC and 37 oC 

 

Temperature 
Hb within 
the protein 

Biffurcated Hb 
within the protein 

Hb water 
- protein 

HSAS, 
nm2 

Protein-water interaction 
energy, kJ/mol 

25 oC 67 10 223 43.26 -15754.2 
37 oC 64 6 217 42.12 -16114.5 

 
 

The stability of the protein is given by the compensating forces acting between residues, 
such as favourable hydrophobic, van der Waals and hydrogen bonding and unfavourable 
conformational entropy [17].  

The investigation of the protein hydrogen bonding and hydrophobic surface available to 
the solvent was carried out on the molecular dynamics trajectory data.  

All changes in BMP2 structure, as well as the interactions established with the water 
environment highly influence the molecular behaviour of the protein [18]. The temperature 
increase from 25 to 37oC causes a slight decrease of the hydrophobic surface available to the 
solvent (HSAS) which was calculated as the van der Waals’ envelope of the proteins expanded by 
the radius of the solvent sphere about each solute atom centre. The HSAS represents 58-59% of 
the total solvent accessible surface of the protein.  

Hydrogen bonds (Hb) were computed based on geometrical features between acceptor (A) 
and donor (D) atoms using HBPLOT program [19-20]. The hydrogen bonds were identified based 
on the following criteria: D-A distance < 3.9 Å, H-A distance < 2.5 Å, D-H-A angle > 900, D-A-
AA angle > 900 and H-A-AA angle > 900, where AA is the atom attached to the acceptor.   

The pattern detailed hydrogen-bonding interactions is a function of time. The number of 
hydrogen bonds within the protein and between the protein and water molecules was evaluated. 
The small conformational changes occurring in the BMP2 with the temperature caused variation 
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on the simple and bifurcated Hb number (Table 3). McDonald and Thornton [19] showed that 
bifurcated hydrogen bonds are weaker than single bonds since the interaction energy associated 
does not double but increases by only 58%.  

Most of the hydrogen bonds have hydrogen - acceptor distances ranging from 2.7 to 3.0 Å 
and connect the main chains of two different residues (~73%); only 7% of Hbs are established 
between the side chains of aminoacids, and the rest are side-main chain type.  Regardless of the 
simulation conditions, the Hbs are involved in the stabilization of each secondary elements of the 
protein structure [21]. 

A detailed check of the Hb involved in the stabilization of the BMP2 structure showed that 
~ 23% of the bonds ensure β-sheet regions packing, while ~34% are responsible for α-helix 
backbone effective stabilization at 37 oC.  

The Hbs involved in the stabilization of β-sheets are responsible for shielding effect, 
leading to relatively strong interactions that might be responsible for slow dissolution of β-sheet 
structure once formed, as well as for protein misfolding [22]. 

 
3.3 Analysis of mechanical properties 
 
The molecular response of the BMP2 to typical optical tweezers tests, simulated by 

stretching the protein up to 10 % elongation, was analysed by plotting the force versus the protein 
elongation. Figure 3 presents the results of SMD simulations performed at constant pulling rate of 
0.001 nm/ps and with a spring constant of 3000 kJ/(mol nm2). These parameters have been chosen 
based on previous sensitivity analysis [11] showing that higher spring stiffness reduces the system 
oscillations and are hence more effective in terms of computing costs and lower pulling rates are 
associated to higher oscillating motion of the system and higher protein stiffness.  

The value of the pulling rate is usually established based on the size of the molecular 
systems. The pulling rate used in the present experiment was comparable to the one adopted in 
previous computational studies but higher compared to the pulling rates used regularly in AFM 
experiments [23] that varies in the nm/ms range. 

 

 
 

Fig. 3. Force vs. molecular elongation for BMP2 elongation tests performed at a pulling 
rate of 0.001 nm/ps with a spring constant kS = 3000 kJ/(mol nm2). 

 
 
The stiffness of BMP2 was estimated as the slope of linear fitting of the force 

experimented by the P group due to the action of the spring vs. protein elongation. As shown in 
Figure 3, BMP2 conformation seems to be more flexible at human body temperature (stiffness of 
288.94 pN/nm), compared to the room temperature (stiffness of 353.38 pN/nm).  The value of the 
stiffness obtained in our study, by performing SMD simulation for the BMP2 is comparable with 
the elasticity reported in the literature for two globular protein, myosin and kinesin [11]. 

 

y = 353.38x + 45.819

R2 = 0.9787

y = 288.94x + 127.67

R2 = 0.9843

0

50

100

150

200

250

300

350

400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fo
rc

e,
 p

N

Axial deformation, nm

y = 353.38x + 45.819

R2 = 0.9787

y = 288.94x + 127.67

R2 = 0.9843

0

50

100

150

200

250

300

350

400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fo
rc

e,
 p

N

Axial deformation, nm



87 
 

 
4. Conclusion 
 
In this study, the in silico approach was used to simulate the dynamics of BMP2 in water-

like medium and to estimate its conformational particularities at room and human body 
temperature. Computational results show that small conformational changes, in the order of few 
Angstrom, occurring in the BMP-2 structure reflect on its mechanical properties. The knowledge 
of the conformational particularities of the BMP2 molecules in different conditions might allow a 
better understanding of its structure-function relationship. In order to get a more complete picture 
on role of BMP-2 in bone healing, further investigations are to be performed for identifying the 
specificity of the protein for different other tissue components.  
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