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The aim of the present study was to prepare inorganic-organic hybrid material for 
biomedical potential application. The cobalt-ferrite (CoFe2O4) magnetic nanoparticles 
(MNPs) obtained by sol-gel method and treated at 200 °C were immobilized in a small 
peptide. Covalent and non-covalent attachment of proteins with MNPs provides access to 
functional hybrid systems with applications in biotechnology, medicine and catalysis. The 
crystalline phases, morphology and chemical composition of the particles were 
characterized by GC-MS, NMR, TEM/EDX, BET and FT-IR. 
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1. Introduction 
 
Magnetic nanoparticles (MNPs) have an additional advantage of being easily manipulated 

by permanent magnets or electromagnets, independent of normal microfluidic or biological 
processes. A variety of nanoparticles (NPs) with various shapes such as spheres, nanotubes, nano-
horns and nano-cages, made of different materials, from organic dendrimers, liposomes, gold, 
carbon, semiconductors, silicon to iron oxide, have already been fabricated and explored in many 
scientific fields, including chemistry, material sciences, physics, medicine and electronics [1]. 

Advances in nanotechnology play an important role in designing nanomaterials with 
specific functional properties that can address the shortcomings in the area of diagnostics and 
therapeutics. The potential of nanomaterials has sparked enormous interest in the drug industry 
and has envisaged several applications, as can be evidenced by the exponential growth of activities 
in this field. The advantages of the nanoparticles are mainly due to their nanoscale size and large 
surface area with the ability to get functionalized with targeting ligands, therapeutic moieties and 
biomolecules [2]. 

The phase structure and microstructure of the nanoparticles determine their physical 
properties. Nanoparticle syntheses utilizing biomimetic approaches have advanced in recent years. 
Peptides, with their ability to influence inorganic crystal growth, are a topic of great interest. The 
peptide influences the phase as well as the microstructure and therefore, the magnetic properties of 
the particles [3]. 

The chemical coating of these nanoparticles may also to be linked to molecules 
compatible, that specifically targeting a area such as an organ, a disease or a particular biological 
system [4]. 

In the last decade, magnetic NPs are used in bio-applications, including magnetic bio-
separation and detection of biological entities (cell, protein, nucleic acids, enzyme, bacterial, virus, 
etc.), clinic diagnosis and therapy (such as MRI (magnetic resonance image) and MFH (magnetic 
fluid hyperthermia)), targeted drug delivery and biological labels [5]. 
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Nanotechnology presents very promising characteristics for its application in the 
biomedicine area. By now the most advanced application of nanoparticles in medicine is the use of 
iron oxide nanoparticles embedded in biocompatible polymers as magnetic resonance imaging 
(MRI) contrast agents. Until now have been studied various synthesis techniques for the 
preparation of CoFe2O4 nanoparticles, such as co precipitation [6], hydrothermal [7] micro 
emulsion [8], but the principal difficulty of these methods is that the obtained nanoparticles are 
agglomerated, having limited control over dimensional distribution, thus restricting their 
applications [9]. For early detection of tumors by MRI were used iron oxide bond with various 
types of ligands such as proteins, peptides and small molecules demonstrate active targeting of 
tumors via specific molecular recognition[10]. Bio-sensing strategies based on magnetic 
nanoparticles (MNPs) have recently received considerable attention. 

The chemical synthesis of multimaterial nanocrystal heterostructures combining sections 
of oxide, metal and semiconductor materials in a single multifunctional nanoscale object 
represents a challenging research direction along which nanochemistry research is investing 
substantial efforts [11]. Multi-functional nanomaterials possessing fluorescent and magnetic 
properties may be used in a number of biomedical applications in nanobiotechnology, such as 
bioimaging, bio- and chemo-sensing, cell tracking and sorting, bioseparation, drug delivery and 
therapy systems in nanomedicine [12]. The therapeutic applications of oxide and hybrid 
nanostructures strongly depend on their physicochemical properties such as permeability, stability, 
morphology (size, shape and functionality) and biocompatibility. These physicochemical 
properties are dictated by the types, structures and orientations of the materials that comprise the 
oxide and hybrid nanostructures [13]. The bio-functionalization of monodisperse magnetic 
nanoparticles (NPs) of size 10-20 nm is of great interest as it would enable the ultra-sensitive 
magnetic detection of both proteins and nucleic acids. Given their extremely small size and high 
magnetization, such nanoparticles could also be used to bind and transport proteins, nucleic acids, 
and other biomolecules through microfluidic networks and, following introduction into a living 
organism, they could provide a means of monitoring and influencing cellular processes [14]. 

The present study investigates a new and easily synthetic route of preparation of 
inorganic-organic hybrid material with potential application in biomedicine. A proper 
characterization methodology was developed for this hybrid material. 

 
 
2. Materials and Methods 
 
All used reagents are analytical grade. Iron (III) nitrate hexahydrate, cobalt (II) nitrate 

hexahydrate, ammonium hydroxide and polyvinyl alcohol, triethylamine, dichloromethane and 
N,N’dicyclohexylcarbodiimide were purchased from Merck. Amino acids were acquired from 
Applichem and Alfa Aesar (USA). 

 
2.1. Peptide synthesis: 

 Boc-protected dipeptide (Boc-Ser-Val-OMe) was obtained from valine 
methyl ester hydrochloride, N-BOC-L serine, triethylamine and N, N’dicyclohexylcarbodiimide in 
a molar ratio of 1:1:1.1:1.1. The N-tert-butyloxycarbonyl group was removed using 50% TFA/ 
dichloromethane. The dipeptide was afforded in 75.8 % yield. 

 
2.2. Nanoparticles synthesis and functionalization 
Spinel cobalt ferrites were prepared by sol-gel method using iron and cobalt 

nitrates as precursors. The preparation protocol included the following steps: (1) 
dissolution of metal nitrates in bi-distilled water; (2) addition of polyvinyl alcohol (PVA) 
to first solution for obtain a colloid; (3) increase pH to about 8 by addition of NH4OH 
solution; (4) stirring at 80°C; (5) drying the gel at 140°C; (6) and finally the dried gel was 
treated at 200°C. The solid product thus obtained was incorporated in dipeptide in mass 
ratio 1:1 and 1:4. The mixture was dissolved in dichloromethane and ultrasonic for one 
hour at 40°C, in an ultrasonic bath equipped with thermostat and timer. 
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The hybrid material obtained was characterized using following methods: GC-MS. 
TEM/EDX, and BET analysis. 

 
2.3. Materials Characterization 
Qualitative analysis of dipeptide was performed on a GC-MS 7890A-5975C system 

(Agilent Germany) using the EZ: faast GC-MS free amino acids kit and ZB-AAA GC column 
(Phenomenex, Torrance, CA, USA). The used analysis conditions were the standard conditions 
written on the kit. 

GC-MS separation conditions: the standard analysis conditions were the instructions from 
the kit: Oven: 30ºC (hold 1 min) to 40ºC at 30ºC/min (hold 10 min) to 360ºC (hold 1 min); 
Equilibration time: 1 min; Injection: split 1: 15; 250ºC; 2µL; Carrier Gas: Helium 1.1mL/min; 
110ºC; Inlet pressure: 5.824 kPa/min; Detector: MS; Mode: Scan Transfer Line Temperature: 
250ºC; Analyzer Type: Electron Energy: 70eV.  

1H NMR spectra were recorded on a Varian Mercury 300 spectrometer operating at 299.97 
MHz. 

The surface morphology of the materials obtained was observed using a transmission 
electron microscope (TECNAI, F30 G2) with linear resolution 1 Å and a punctual resolution of 1.4 
Å and elemental analysis was performed with Energy Dispersive X Ray (EDX) spectrum. 

The nanomagnetic compound and the hybrid material specific surface area (BET) were 
determined by Brunauer-Emmet-Teller (BET) method, based on adsorption/desorption isotherms 
of nitrogen at 77 K obtained with NOVA 2200 apparatus. The pore size distribution (PSD) was 
calculated from the adsorption isotherms using BJH (Barrett-Joyner- Halenda) method [15]. 

The Fourier transformed infrared spectrum was recorded in KBr pellet on a Bruker FT/IR-
Vertex 70 instrument (resolution 4 cm–1) in spectral range 4000-400 cm-1 (32 scans). 

 
 
3. Results and Discussions 
 
3.1 GC-MS analysis 
As a first step were prepared the hybrid material precursors: MNPs and the dipeptide. The 

synthesis of the dipeptide was provided by a conventional solution method, according to a 
procedure previously described by our research team [17-19]. For the synthesis of peptide was 
selected two amino acids that are found in natural products, especially in medicinal herbs, namely: 
L-serine and L-valine. The formation of the dipeptide was investigation by GC-MS method. The 
obtained chromatograms are shown in the Figure 1. 

 

Fig. 1. GC-MS chromatogram for dipeptide 
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3.4 BET analysis 
Many properties of nanoparticles are improved with reducing size, so it is very important 

to determine their surface area. 
The isotherm data obtained in partial pressure range of 0.05 to 0.3 (Figure 4) is plugged 

into the Langmuir adsorption isotherm, to obtain the BET plot. 
 

Table 1. BET results for CoFe2O4 and CoFe2O4/dipeptide 
 

 

BET CoFe2O4 

p/p* cm3/g STP 1/x[(p*/p)-1] 

0.0577 0.313 0.1956 

0.1128 0.3766 0.3378 

0.1755 0.3949 0.539 

0.238 0.3935 0.7937 

0.3005 0.3677 1.1683 

BET CoFe2O4 /dipeptide 

p/p* cm3/g STP 1/x[(p*/p)-1] 

0.0577 1.3601 0.04505 

0.1126 2.1129 0.04601 

0.1758 2.5434 0.08385 

0.238 2.7805 0.11233 

0.3006 2.9192 0.14723 
 

 
 

Fig. 4. The BET isotherms of the CoFe2O4 (a) and CoFe2O4/dipeptide (b) 
 
 

 In figure 5  is presented BET plot of IRMOF-13 using points collected at the pressure 
range 0.05 to 0.3 by the equation used to determine the surface area. 
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Fig. 6. Overlapping IR spectra for hybrid inorganic-organic material and precursors 
 
 

4. Conclusions 
 
Hybrid magnetic nanoparticles based on cobalt ferrite and serin-valine were prepared 

through a simple, effective method. The chemical structure of organic compound was evaluated by 
GC-MS and NMR analysis. Investigation of the specific surface of hybrid material crystalline 
phases, morphology and chemical composition of the final compound and precursors proved the 
confirmed obtaining of the hybrid system. The final product present interesting potential 
application in biomedicine, due to the fact that shows both features of magnetic nanoparticles and 
total synthesis of a natural dipeptide. Obtaining of inorganic-organic hybrid material was proven 
by TEM/EDAX, FT-IR and BET analysis. 

This MNPs functionalization with a naturally small peptide can be considered as just a 
first step in design of new inorganic –organic hybrid materials with interesting features for 
development of new and improved nanotechniques especially for medical area. 
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