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1
The m-order connectivity index " ¥(G)of a graph G is (di,diz"'dim”) A, where
d; d; ...d;  runsoverall paths of length m in G and d, denotes the degree of vertex V, .

A dendrimer is an artificially manufactured or synthesized molecule built up from
branched units called monomers. In this paper, we compute 2- and 3-order connectivity
index of an infinite family of polyphenylene dendrimer.
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1. Introduction

A simple graph G = (V,E) is a finite nonempty set V(G) of objects called vertices
together with a (possibly empty) set E(G) of unordered pairs of distinct vertices of G called edges.
In chemical graphs, the vertices of the graph correspond to the atoms of the molecule, and the
edges represent the chemical bonds.

A single number which characterizes the graph of a molecular is called a graph theoretical
invariant or topological index. Among the many topological indices considered in chemical graph,
only a few have been found noteworthy in practical application, connectivity index is one of them.
The connectivity index is one of the most popular molecular-graph. This index has been used in a
wide spectrum of applications ranging from predicting physicochemical properties such as boiling
point and solubility partition. The molecular connectivity index 7 provides a quantitative
assessment of branching of molecules. Randic (1975) first addressed the problem of relating the
physical properties of alkanes to the degree of branching across an isomeric series [6]. The degree
of branching of a molecule was quantified using a branching index which subsequently became
known as first- order molecular connectivity index . Kier and Hall (1986) extended this to higher
orders and introduced modifications to account for heteroatoms [4].

Molecular connectivity indices are the most popular class of indices (Trinajastic, 1992).
They have been used in a wide spectrum of applications ranging from predicting physicochemical
properties such as boiling point, solubility partition, coefficient etc, (Murray et al., 1975; Kier and
Hall, 1976) for predicting biological activities such as antifungal effect, an esthetic effect, enzyme
inhibition etc, (Kier et al., 1975; Kier and Murray, 1975) [4].

Let G be a simple connected graph of order n. For an integer m > 1, the m-order
connectivity index of an organic molecule whose molecule graph G is defined as
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"x(G) = Z \/7

where i,...1 ., runs over all paths of length m in G and d, denote the degree of vertex V..In
particular, 2-order connectivity index and 3-order connectivity index are defined as follows:

*2(G)= %}m 76)= ..2.3.4\/W

Dendrimers are hyper-branched macromolecules, with a rigorously tailored architecture.
They can be synthesized, in a controlled manner, either by a divergent or a convergent procedure.
Dendrimers have gained a wide range of applications in supra-molecular chemistry, particularly in
host guest reactions and self-assembly processes. Their applications in chemistry, biology and
nano-science are unlimited. Recently, some researchers investigated m-order connectivity indices
of some dendrimer nanostars, where m =2 and 3 (see [1,2,3,7]). In this paper, we shall study the 2-
and 3-order connectivity index of an infinite family of polyphenylene dendrimers.

2. Second-order and third-order connectivity index of dendrimer

In this section, we shall study the 2-order and 3-order connectivity index of a dendrimer.
We consider polyphenylene dendrimer by construction of generations G, with n growth stages.

We denote this graph by D,[n]. Figure 1 shows the generations G, with 2 growth stages.
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Fig. 1. Polyphenylene dendrimer of generations G, with 2 growth stages.

The following theorem gives the 2-order connectivity index of polyphenylene dendrimer.
Theorem 1. Let n € N. Then, the 2-order connectivity index of D,[Nn] is given by

19[ 67f

ZZ(D4[ (198\/>+152\/§+6\/_+9)+( )(2n+1_4).




Proof. First we compute y(D,[1]). Let dilizi} denote the number of 2-paths whose three

consecutive vertices are of degree I, 1,,1,, respectively. In the same way, we use d.(. ,) to mean

d... in n—th stages. Particularly, d" =d"

iyl sl i3iy0;
We can see that
di) =48, d) =48, d)) =24, dj)) =56, dj;)) =4, djj, =44, d};, =8, d};) =6

Therefore, we have

2 (D[] = 48 48 24 56
! V2x2x2  2x2x3  2x3x2 2x3x3
4 44 8 6

+ + + +
3x2x3  3x3x3 2x3x4 +3x4x3
=é(198¢§+152\/§+6\/€+9).

Now, we construct the relation between > (D,[n]) and *y(D,[n—1]) for n>2.
By simple reduction, we have
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d) =d{P +18x2", d) =di +20%2", d) =d5 " +10x 2", di) =d ;" +28x2",

A0 =dU +2x2", dm =d 0P +22x2",
and for any (iii,) # (222),(223),(232),(233),(323),(333), (234),(343), we have d{f) =0.

Therefore

18x2" 20x2" 10x2" 28x2"
27(D,[n]) = *x(D,[n—1]) + + + +
2(Bi[nh="2O.In-1D 2x2x2  2x2x3  2x3x2  2x3x3
2x2" 22x2"

+ +
\/3><2><3 \/3><3><3

=0+ (22 T 0
From above recursion formula, we have
2 2(D,[n]) = *£(D,[n 1))+ (ﬂ ﬂ) >
—2(D,[n~ 2]>+<19[ 6” O3y on 4 pmty
( [l]) (% 67\/7)(2n 2n—1+m+22)
2O =L 1982 415243 + 6/ +9)+(19f TS5y sy,

The proof is now complete. g

The following theorem gives the 3-order connectivity index of polyphenylene dendrimer.

Theorem 2. Let n € N. Then, the 3-order connectivity index of D,[n] is given by

*x(D,[n]) zé(2l6+104\/€+6\/§+18\/§) +é(99+46\/€)(2n+1 _ay.



902

Proof. Let dII i, denote the number of 3-paths whose four consecutive vertices are of degree
I,,1,,15,1,, respectively. With the same way, we use dl(I |)| to mean d;;;; in N —th stages. It is
clear that d. =d™

i3y i4isis0;

Similar to Theorem 1, we first compute * (D, [1]) . We can see that
— @ _ _ (O 1 _ o _ n _
d3, =32, dj3), =32, d};), =48, d)), =40, dj), =16, di)}, =72, d3;), =16, ,
disn; =38,

Oisyy =48, Ay =8, dyyly =24,

Thus,
G, [1])—\/ 32 32 48 40
2x2x2x%x2 \/2><2><2><3 \/2><2><3><2 \/2><2><3><3
16 .\ 72 .\ 16 .\ 8 .\
V2x3x3x2  A2x3x3x3  +3x2x3x3  3x2x2x3
48 8 24

+ +
V3x3x3x3  2x2x3x4  [2x3x4x3
:é(216+104\/g+6\/§+18x/5).

Now, we compute ° x(D,[n]).

The relations between d (”) d (” 1) for N> 2 are

6 =00 1262 6, G 41202, A, 0 2002,
d33; = A3y’ +20x2",
A% = A5 +85x2", 08, =050 +36x2", Al =AY +8x2", 0L =0 444
diy =iy’ +24x2",
and for any (i,i,,i,) # (2222),(2223),(2232), (2233) (2332),(2333),(3233)
,(3223),(3333),(2234),(2343), we have d). =

II I I
Therefore,

12x2" 12x2" 20%2"
*2(D,[n]) ="*x(D,[n-1])
szzxzxz \/2><2><2><3 \/2><2><3><2
20x2" 8x2" 36x2" 8x 2" 4x2" 24x2"

+ + + + + +
V2x2x3x3  2x3x3x2  /2x3x3x3  3x2x3x3 3x2x2x3 +3x3x3x3

= 3;((D4[n—l])+$(99+46\/€)><2"

=32(D,[n —2])+é(99+44¢€)(2“ +2m

= 4(D,[1]) +$(99+44\£)(2" +2M 427
So,
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*x(D,[n]) Zé(2l6+104\/g+6\/§+18x/§) +é(99+46\/g)(2n+1 _4),

The proof is now complete. gy
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