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In the present paper, the phonon dispersion curves (PDC) of some alkali metals are 
reported in second order approach through the equation given by Hubbard and Beeby 
(HB). The pair correlation function  is directly computed from the interatomic pair 
potential, which is used in the present computation. Two different forms of local field 
correction functions proposed by Hartree (H) and Ichimaru-Utsumi (IU) are used in the 
present study the screening dependence of the phonon frequencies in the metallic 
elements. Present results of phonon dispersion curves are found to be in qualitative 
agreement with available experimental results. 
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1. Introduction 
 
The problem of an appropriate description of the structure and related properties of liquids 

arise from their intermediate situation between ideal gases and solids. It is well known that 
crystalline solids having long range order are completely characterized by their symmetry 
properties whereas liquids having no such periodicity and can be characterized only by distribution 
or correlation functions. In liquids the interpretation of neutron inelastic scattering measurements 
is more complicated than it is in the case of solids, largely because there is no long range order, 
neither in space nor in time. At low frequencies, the liquids behave as a viscous medium but at 
higher frequencies its response is elastic, the system behaves like a solid and transverse excitations 
are supported [1-10]. Recently, Pratap et al. [5] and Thakor et al. [6] have reported phonon 
dispersion curves for liquid alkali metals theoretically. While, Jong et al. [11] and Pilgrim et al. 
[12] have studied the phonon dispersion curves (PDC) of Li and Na alkali metals experimentally. 

Collective excitations in fluids have been studied experimentally, theoretically and by 
computer simulations for almost several decades. Lot of effort has been put to study the dynamical 
properties of liquid metals [1-10] both theoretically and experimentally. The investigation of 
collective modes in liquids has comparatively received less attention. Some few researchers [1-8] 
have reported the phonon dispersion curves of simple liquid metals. It was found that the 
maximum deviation takes place in the vicinity of the first spherical Brillouin zone. This region lies 
nearly at the half distance of the first peak in the structure factor . Thus, the choice of 
structure factor also plays a vital role in the study of lattice dynamics of liquid metals. In the 
present work we have used the pair correlation function  instead of structure factor  
calculated using the interatomic pair potential to give the calculation a flavour model potential, 
which is a beauty of our present paper. 

The present article deals with the computation of the phonon dispersion curves (PDC) of 
some alkali metals with the aim to explore the applications of model potential of Gajjar et al. [13] 
for the first time. The choice of the model potential form factor is certainly an important factor in 
the study of metallic properties and its actual form is much more sensitive to the choice of the 
local field correction functions of the electron gas. Hence, the purpose of the present article is not 
only to study the phonon dispersion curves (PDC), but also to see the influence of the various local 



92                                                                         Aditya M. Vora 
 

 

field correction functions in the screening. Therefore, we have adopted here two different types of 
local field correlation functions viz. Hartree (H) [14] and Ichimaru-Utsumi (IU) [15]. Also, we 
have used here Hubbard and Beeby (HB) [16] approach for studying the phonon dispersion curves 
(PDC) of liquid alkali metals.  

 
 
2. Computational methodology 
 
The interatomic pair potential ( )rΦ is calculated from the relation given by [17, 18], 
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Where,   and  are the valence and atomic volume of the metallic elements, respectively.  The 
energy wave number characteristics appearing in the Eqs. (1) is written as [17, 18], 
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Here ,( )qWB ( )qHε ,  are the bare ion potential, the Hartree dielectric response function and 
the local field correction functions to introduce the exchange and correlation effects, respectively. 

( )qf

The Hartree (H) screening function [14] is purely static, and it does not include the 
exchange and correlation effects.  The expression of it is, 
 

( ) 0=qf .                                                           (3) 
 

The Ichimaru-Utsumi (IU) local field correction function [15] is a fitting formula for the 
dielectric screening function of the degenerate electron liquids at metallic and lower densities, 
which accurately reproduces the Monte-Carlo results as well as it also, satisfies the self 
consistency condition in the compressibility sum rule and short range correlations. The fitting 
formula is   
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The parameters ,  and  are the atomic volume dependent parameters of IU 

local field correction functions. The mathematical expressions of these parameters are narrated in 
the respective papers of the local field correction function [15].  

IUA IUB IUC

 The bare-ion pseudopotential due to Gajjar et al. [13] is given by 
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here, Z  and  are the valence and parameter of the model potential, respectively. The details of 
the model potential are narrated in the literature [13].  

Cr
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To compute the phonon dispersion relations of liquid metals, the most frequently used 
approach of Hubbard and Beeby (HB) [16] is adopted. With the physical argument that the product 
of the static pair correlation function  and the second derivative of the interatomic pair 
potential is peaked near the hard sphere diameter σ, Hubbard and Beeby (HB) [14] have 
derived the expressions for the longitudinal phonon frequencies ωL(q) and the transverse phonon 
frequencies ωT(q) as [16], 
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Where,  and are the number density, atomic mass, pair correlation function and 
interatomic pair potential of the element, respectively.  

( )rΦ

The fundamental ingredient, which goes into the calculation of the phonon dispersion 
curves (PDC) of liquid metals, is the interatomic pair potential ( )rΦ . In the present study, the 
interatomic pair potential  is computed from Eqs. (1). A quantity which is equally important 
as the interatomic pair potential Φ(r) while studying a disorder system is the pair correlation 
function (PCF) . It provides the statistical description of the structure of the system under 
investigation. The complete information of the precise position and momentum of each particle at 
each instant of time is contained in this function. The function 

( )rΦ

( )rg

( )rg  can be obtained either 
experimentally by X-ray diffraction and neutron diffraction technique or computed theoretically 
from the interatomic pair potential ( )rΦ  [19]. Instead of using experimentally available ( )rg , 
here the pair correlation function for all disordered systems are generated from presently obtained 
interatomic pair potential . The function ( )rΦ ( )rg  is presently calculated using the expression 
[19], 
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Here  is the Boltzmann’s constant and T  the room temperature of the system under 
investigation.  

Bk

 
 

3. Results and discussion    
 
The constants and parameters used in the present computations of the phonon dispersion 

curves (PDC) of the liquid alkali metals are tabulated in Table 1. The computed phonon dispersion 
curves of liquid alkali metals are displayed in Figures 1-5. Here, also it may be seen that the 
dispersion of the longitudinal phonon exhibits oscillatory behaviour extending to the large wave 
vector transfer region. But in the case of transverse phonon, the oscillatory behaviour seems quite 
insignificant for high q value. This indicates that the transverse phonon undergoes larger thermal 
modulation than the longitudinal phonon, which may be connected with the instability of 
transverse phonons in liquids. The ω→q curves for transverse phonons attain maxima at a high q 
value than the longitudinal phonon curve. The influence of the exchange and correlated motion of 
electron through various local field correction functions lowers the phonon modes more than those 
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due to static Hartree (H) effect. The inclusion of local field correction does not affect the position 
of the maxima, minima and the crossing of ωL and ωT modes, very significantly. The position of 
the first minimum roughly coincides with the first peak in the structure factor of the respective 
systems. The computer simulations and analytical calculations have demonstrated that this 
minimum arises from a process analogous to the Umklapp scattering in the crystalline solids. This 
sharp first maximum in the static structure factor acts like a smeared-out reciprocal lattice vector. 
The experimental or theoretical data of most of the alkali metals are not available in the literature. 
But, the behaviour of the present results does not show any abnormality. From the Figures 1-5, it 
can be noted that when we go from Li→Cs, the peak of the phonon dispersion curves reduces. 
Also, we have compared our results of phonon dispersion curves of Li and Na alkali metals with 
available experimental results of Jong et al. [11] and Pilgrim et al. [12] and found qualitative 
agreement with them. Also, the present results are found superior than the experimental data. From 
the Fig. 1-5, it is seen that, the present results obtained from H-local field correction function show 
higher values in comparison with IU-local field correction function for most of the alkali metals. 
The experimental or theoretical data for K, Rb and Cs metallic complexes are not available for 
further comparison. 

 
 

Table 1. Constants and parameters for alkali metals. 
 

Metal Z kF (au) ΩO (au)3 rC (au) 
Li 1 0.5890 144.9 0.7738 
Na 1 0.4882 254.5 1.0765 
K 1 0.3947 481.4 1.3880 

Rb 1 0.3693 587.9 1.4837 
Cs 1 0.3412 745.5 1.9108 
 
 
 

 

 
 

Fig. 1. Phonon dispersion curves of liquid Li.  
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Fig. 2. Phonon dispersion curves of liquid Na. 
 
 

          
 

Fig. 3. Phonon dispersion curves of liquid K. 
 

Fig. 4. Phonon dispersion curves of liquid Rb. 

 

 
 

Fig. 5. Phonon dispersion curves of liquid Cs. 
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4. Conclusions 
  
At the end, we conclude that the presently computed results of the phonon dispersion 

curves (PDC) of liquid alkali elements are showing consistent nature. The present results of 
phonon dispersion curves (PDC) for Li and Na are shown qualitative agreement with available 
experimental data and also found superior with them. The experimental data for another liquid 
metals are not available for further comparison. Thus, in the absence of experimental results such 
calculations may be considered as one of the guidelines for further theoretical or experimental 
investigations. This is very much essential for obtaining concrete conclusions. Also, the model 
potential along with H and IU local filed correction functions is capable of explaining the phonon 
dispersion curves (PDC) of liquid alkali metals. From the present experience, we also conclude 
that it should be interesting to apply other local pseudopotentials for such comprehensive study to 
judge and confirm the wider applicability of the potential. 
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