
Digest Journal of  Nanomaterials and Biostructures            Vol. 6, No. 3, July - September 2011, p. 937 - 941 
 
 
 

COMPUTING SOME TOPOLOGICAL INDICES OF NANO STRUCTURES 
 

 
JAFAR ASADPOURa* , RASOL MOJARADb, LILA SAFIKHANIc 
aDepartment of MathematicsIslamic Azad University, Miyaneh Branch, Miyaneh, Iran 
bIslamic Azad University, Bushehr Branch, Bushehr Iran 
cIslamic Azad University, Miyaneh Branch, Miyaneh, Iran 
 
Let G=(V,E) be a graph, where V is a non-empty set of vertices and E is a set of edges. 
One of the best known and widely used is the connectivity index, x introduced in 1975 by 
Milan Randić. In this paper we compute Randić, Zagreb  and ABC indices  of TUC4C8(S), 
TUC4C8(R)  nanotube and V-Phenylenic nanotorus.  
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1. Introduction 
 
All of the graphs in this paper are simple. A molecular graph is a simple graph such that its 

vertices correspond to the atoms and the edges to the bonds. Note that hydrogen atoms are often 
omitted [1]. 

Mathematical chemistry is a branch of theoretical chemistry for discussion and prediction 
of the molecular structure using mathematical methods without necessarily referring to quantum 
mechanics. Chemical graph theory is a branch of mathematical chemistry which applies graph 
theory to mathematical modeling of chemical phenomena [2,3,4]. This theory had an important 
effect on the development of the chemical sciences. 

A topological index is a numeric quantity from the structural graph of a molecule. Usage 
of topological indices in chemistry began in 1947 when chemist Harold Wiener developed the 
most widely known topological descriptor, the Wiener index, and used it to determine physical 
properties of types of alkanes known as paraffin [5]. 

If  x,y∈V(G) then the distance dG(x,y) between x and y is defined as the length of any 
shortest path in G connecting x and y.  

The Zagreb indices have been introduced more than thirty years ago by Gutman and 
Trinajstić [2]. They are defined as    ∑

∈
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 where du and dv are the degrees of u and v. The connectivity index introduced in 1975 by Milan 
Randić [3, 4, 5], who has shown this index to reflect molecular branching. Randić index (Randić 

molecular connectivity index) was defined as follows   ∑
∈
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Recently Furtula et al. [1] introduced atom-bond connectivity (ABC) index, which it has been 
applied up until now to study the stability of alkanes and the strain energy of cycloalkanes. This 

index is defined as follows  ∑
∈ +
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In this paper we compute some topological indices for  TUC4C8(S) nanotube. 
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2. Main results 

 
In this sections , we compute this  indices, for some well-known class of graphs, and in 

continue we calculate this  indices for TUC4C8(S) nanotube. 
 
Example 1. Let Cn be a cycle on n vertices. We know all of vertices are of degree 2 and so 
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Fig 1. cycle graph Cn with n=6 
 
Example 2. Let Kn be a complete graph on n vertices.  We know all of vertices of degree  n-1 and 
so 

   2

)(
2 )1()1()1()( −=−×−= ∑

∈

nnnnGM
GEuv

,   
1)1)(1(

1)(
)( −

=
−−

= ∑
∈ n

n
nn

G
GEuv

χ  and 

22
42

)1()1(
2)1()1()(

)( −
−

=
−+−
−−+−

= ∑
∈ n

nn
nn

nnGABC
GEuv

 

 
Example 3. Let Sn be a star on n + 1 vertices (Fig 2). One can see there are n vertices of degree 1 
and a vertex of degree n. So, 
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Fig. 2. Star graph with n + 1 vertices. 

 
Now we compute Randić, Zagreb  and ABC indices of a TUC4C8(S) nanotube as 

described above respectively. The Randić, Zagreb  and ABC indices of the 2-dimensional lattice of 
TUC4C8(S) graph K= KTUC[p,q] (Fig 3) is also computed. Following Diudea [8,9], we denote a 
TUC4C8(R) nanotorus by H = HTUC[p,q] (Fig 4 ). It is easy to see that |V(K)| = |V(H)| =8pq, 
|E(K)| = 12pq -2p-2q  and |E(H)| = 12pq. We also denote an V-Phenylenic nanotorus by Y = 
VPHY[4p,2q]  and  |E(Y)|=36pq (Fig 5).   



 
 

One can see that ∑
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 where 

ii uvi dd +=β . So whit respect the molecular graph of K (Fig 

3), one can see that there are three separate cases and the number of edges is different. Suppose e1, 
e2 and e3 are representative edges for these cases. Then 43131 ==== ββαα  , 62 =α  and 

52 =β . We define N(e)  number edge in position )(GEe∈  in graph G, so we have N(e1)= 
2p+2q+4 , N(e2)= 4(p + q - 2) and N(e3)= 12pq – 8 p -8 q + 4. 

 

 
Fig. 3. 2-Dimensional Lattice of TUC4C8(S) Nanotorus with p = 4 and q = 2 
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We now consider the molecular graph H= HTUC[p,q] , Fig 4, and Y=V-Phenylenic nanotorus 
Fig 5. 

 
Lemma 1. For an arbitrary graph G,   
(a)  )()( 2

2 GEkGM =  if and only if G be a k-regular graph. 
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Proof:  If G be k-regular then it is easy to see that for every e∈V(G), 2ki =α and 
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Fig. 4. The 2-Dimensional Lattice of TUC4C8(R) Nanotorus. 

 
By using lemma 1,  consider the Figure 4. One can see that  TUC4C8(S)  graph is 3-

regular, so  
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Naw by using lemma 1,  consider the Y=V-Phenylenic nanotorus, Figure 5. 
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Fig. 5. A V-Phenylenic nanotorus. 
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