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In this paper, reduced graphene oxide/silver (RGO-Ag) nanocomposite was synthesized 
via a simple one-pot hydrothermal method for photocatalytic hydrogenation of 
nitrobenzene (NB) to aniline. The synthesized nanocomposite was characterized by UV-
vis spectroscopy, Raman spectroscopy, FTIR, XPS, TGA and SEM. Results showed that 
the formation of metallic Ag and reduction of GO was achieved under hydrothermal 
condition. The result RGO-Ag nanocomposite was used as a novel photocatalyst for 
hydrogenation of nitrobenzene to aniline under visible light irradiation. Therefore, RGO-
Ag nanocomposite can be used as an efficient photocatalyst as an alternative way for 
organic synthesis. Moreover, a possible mechanism was also proposed to explain the 
photocatalytic hydrogenation of NB to aniline over the proposed photocatalyst.  
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1. Introduction 
 
Aniline is one of the most important chemicals and intermediates in the production of 

synthetic dyes, rubber chemicals, amino resins and polyurethane [1, 2]. In general, hydrogenation 
of nitrobenzene (NB) over a catalyst has been commonly used to produce aniline [3-6]. 
Traditionally, the synthesis process requires high temperature and high H2 pressure when using Cu, 
Ni, Pt, Pd, Au as catalyst [7-10]. In recent years, photocatalytic and electrolytic reduction of 
nitrobenzene into aniline has been achieved as new techniques [11-14]. Among them, 
photocatalysis is a promising route for the hydrogenation of nitrobenzene because the production 
process can be occurred at room temperature and the entire process uses green energy, solar 
energy, as energy source. Several reports have reported the reduction of NB to aniline by 
photocatalyst. For example, Wu and co-workers reported photocatalytic hydrogenation of NB to 
aniline in water over a Bi2MoO6 photocatalyst under N2 atmosphere in the presence of (NH4)2C2O4 
as a hole scavenger [15]. Theoretically, the photocatalytic conversion of NB to aniline can be 
achieved when the conduction band of photocatalyst is lower than ─0.486 V vs. NHE [16]. 

Recently, graphene, a two-dimensional sp2-hybridized carbon material, has received 
considerable attention due to its excellent charge transport mobility, large specific surface area, 
high electrocatalytic activity and low cost [17-22]. Therefore, it holds great promise for 
applications in various fields. Reduced graphene oxide (RGO) can be regarded as a narrow-band-
gap semiconductor due to the reduction of graphene oxide (GO) partially removes the functional 
groups on the GO surface [23]. In order to optimize its properties and broaden its application, the 
addition of nanoparticles (NPs) of inorganic compounds to form a nanocomposite has been studied 
[24-27]. Among them, silver NPs have been extensively investigated due to its catalytic [28], 
antibacterial [29], electrical [30], optical [31] and surface-enhanced Raman spectroscopic 
properties [32, 33]. Therefore, coupling RGO with Ag NPs may result a promising photocatalyst 
for catalytic hydrogenation of NB to aniline. 

By considering the above aspects, the development of RGO-Ag nanocomposite for 
photocatalytic hydrogenation of nitrobenzene to aniline will be therefore an interesting challenge. 
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Herein, we prepared a RGO-Ag nanocomposite via a simple one-pot hydrothermal method. The 
synthesized nanocomposite was characterized by UV-vis spectroscopy, SEM, TGA, Raman 
spectroscopy and XPS. We also demonstrate here the excellent photocatalytic activity of the RGO-
Ag nanocomposite towards hydrogenation of nitrobenzene to aniline under visible light irradiation. 

 
 

 2. Experimental 
 
2.1 Materials 
Synthetic graphite (average particle diameter <20 μm), silver nitrate (AgNO3), ammonium 

hydroxide (28-30% NH3 basis), urea and nitrobenzene (NB) were purchased from Sigma-Aldrich. 
All other chemicals used were analytical grade reagents without further purification. Milli-Q water 
(18.2 MΩ cm) was used throughout the experiments. 

  
 2.2 Preparation of RGO-Ag nanocomposite:    

Graphene oxide was prepared using modified Hummer's method [34-37]. In a typical 
procedure, 125 ml of concentrated sulfuric acid was taken into a flask filled with graphite powder 
(5 g) followed by the addition of KMnO4 (17.5 g) slowly at 0 °C. The mixture was stirred for 3 h 
at 35 °C and then diluted by water at 0 °C. After that, H2O2 (30 vol.% in water) was added into 
mixture until the bubbling of the gas was completed. The graphene oxide (GO) powder was 
collected by centrifugation of the solution and subsequently dried under vacuum at 80°C for 24 h. 
For preparation of RGO-Ag nanocomposite: GO (10 mg) was added into 120 mL water by 1 h 
ultrasound under ambient condition, then 5 mL of AgNO3 (20 mM) was added to the dispersion 
for further 1 h ultrasound. Then, 0.1 g urea was added into above dispersion under stirring. The 
result suspension was adjusted to pH 9 by ammonia and then transferred to a 50 mL Teflon-lined 
stainless steel autoclave. The autoclave was heated to 140°C and maintained for 6 h in an oven and 
naturally cooled down to the room temperature. The final product was obtained after drying in an 
oven at 70°C for 12 h.  

 
2.3 Characterization 
Surface morphology of samples were analyzed by scanning electron microscope (SEM, S-

4700, HITACHI). The optical characterizations were obtained by UV-vis spectrophotometer 
(Specord 2450, Shimadzu). X-ray diffraction patterns were collected from 5° to 80° in 2θ by a 
XRD with Cu Kα radiation (D8-Advanced, Bruker). Raman analysis was carried out at room 
temperature using a Raman spectroscope (Renishaw InVia, UK) with a 514 nm laser light. TGA 
was performed on a Netzsch STA449 C thermogravimetric analyzer from room temperature to 
800°C at a heating rate of 10°C/min in N2 flow. X-ray photoelectron spectroscopy (XPS) spectrum 
was recorded with PHI 5700 (Physical Electronics, monochromated Al-Kα irradiation, with the 
binding energy of C1s at 284.8 eV as reference). 

 
 2.4 Photocatalytic hydrogenation of nitrobenzene 

A 500-W Xenon lamp with an infrared filter and a cut-off filter of 400 nm was used as 
visible light source. 50 mg of photocatalyst was dispersed in 50 mL of NB-methanol solution (20 
mg/L) in a Pyrex reactor. Prior to the catalytic test, the suspension was purged with N2 to 
elimination of oxygen. After light illumination, 2 mL of suspension was then taken out a certain 
period and the photocatalyst was separated by centrifugation. The absorption of NB and aniline 
was then measured by a UV-vis spectroscopy. The absorbance of NB and aniline at 268 nm and 
229 nm was used for measuring the concentration change. 
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4. Conclusion 
 
In conclusion, we present a one-pot hydrothermal method to synthesize RGO-Ag 

nanocomposite using GO and AgNO3 as starting materials. The RGO-Ag nanocomposite showed 
an excellent dispersity with average Ag NPs size of 90 nm. Due to the small band gap and high 
carrier mobility, the RGO-Ag nanocomposite was used for conversion of NB to aniline by visible 
light irradiation. The results showed that the RGO-Ag nanocomposite capable to conversion more 
than 90% of NB within 90 min under experimental conditions. 
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