VIBRATIONAL DYNAMICS OF Si-S-Se GLASSY SYSTEM ON AB INITIO CALCULATION

X. HAN^{*}, T. YILIN

Mechanic and Electronic Engineering College, HanKou University, Wuhan, 430212, PR China

Ab initio calculations on the basic clusters approximation have been proven to be a useful method to investigate the structural and spectral properties of chalcogenide glasses. And the vibrational modes of clusters consisting of edge-sharing tetrahedral(ES), corner-sharing tetrahedral(CS) , ethane-like structure(ETH) and isolated S_nSe_{4-n} tetrahedron (n=0,1,2,3,4) are calculated at Hartree-Fork/6-31G level. The calculated data with vibration modes of several clusters above indicate that the symmetrical stretching modes related to Si-S and Si-Se bond are accordance with the vibrational coupling theory. In addition, the vibrational modes of SiS₂ and SiSe₂ glassy system, which is different from those of isolated GeS₄ and GeSe₄ tetrahedron in GeS₂ and GeSe₂ glassy system. It indicate the effective coupling of SiS₄ and SiSe₄ between neighboring tetrahedral is stronger than that of GeS₄ and GeSe₄ based on the central-force network model theory.

(Received January 25, 2016; Accepted March 10, 2016)

Keywords: ab initio calculation, Si-S-Se glassy system, Raman vibrational mode analysis

1. Introduction

In the recent years chalcogenide glasses have received great attractive for modern optoelectronics and photonics because of their prominent optical properties such as excellent transparency in mid-IR region and high nonlinear refractive indices [1]. In addition, chalcogenide glass optical materials are applied to numerous devices, for example in IR optical fiber lasers, amplifiers and biomedical sensor devices[2]. Among a variety of chalcogenide glasses, tetrahedral sulphides and selenide are considered to be significant with optical amplifiers, inorganic photoresistors and electronic properties [3]. The structure of Si-S-Se glasses has been studied extensively using many measurement technologies to analyze chalcogenide glasses structure such as Transmission electron microscopy (TEM), X-ray diffraction analysis, EXAFS, neutron diffraction, and Raman scattering analysis, etc[4-6]. However, Raman experiments are well suited to probe local structures with structural vibrations [7]. For instance, Raman spectroscopy can interpret the presence of a stochastic random network structure of chalcogenide glasses that is formed by interconnection between SiS_4 tetrahedra or $SiSe_4$ tetrahedra.Considering the closely relation between internal structure of atomic arrangement and external macro performance of material, it is significant to investigate the detail structure information related to chalcogenide glasses for purpose of achieving the better understanding of special physical and chemical properties of chalcogenide glasses. It is well known that typical amorphous materials like chalcogenide glass can be characterized by short range order (SRO), which means the order is limited in the nearest neighbor distances [8]. On the other hand, the structural organization involving larger distances is commonly termed intermediate range order (IRO)[9].In addition, amorphous $SiS_2(SiSe_2)$ glasses can be considered as a prototype of class of network with

^{*}Corresponding author: chinesehanxuecai@163.com

edge-sharing tetrahedral(ES), corner-sharing tetrahedral(CS) and other interconnection structure. In order to investigate the structure properties of Si-S-Se system, it is important to analyze the vibrational dynamics of basic units in glassy Si-S-Se system.

In this paper, the vibrational modes of basic units such as edge-sharing tetrahedral(ES), two edge-sharing tetrahedral(2ES), corner-sharing tetrahedral(CS), ethane-like structure and isolated $S_n Se_{4-n}$ tetrahedron (n=0,1,2,3,4) in glassy Si-S-Se system are calculated by ab initio method.

2. Theoretical and calculation details

Ab initio calculation on the basis of clusters approximation in glassy system has proven to be useful to investigate the structural and spectral properties of chalcogenide glasses [10]. Furthermore, in amorphous solids, the vibraitional excatations cannot spread over a glass network because of the lack of long-range order. In addition, vibrational properties of glasses can be reasonably predicted by ab initio calculation in terms of appropriate cluster models. For example, in 1999, Koblar Jackson et al[11] built the corner-sharing (CS), edge-sharing (ES) and ethane-like (ETH) clusters models of Ge-S and Ge-Se in order to investigate the Raman-active modes of α -GeS₂ and α -GeSe₂. In the year of 2011, O.Kostadinova et al[12] use the Hartree-Fork (HF) molecular orbital theory to calculate the vibrational frequencies of two cage-like molecular units $As_4Se_n(n=3,4)$ and of the chalcohalide structural models(pyramidal units) $AsI_m(SeH)_{3-m}(m=0,1,2,3).$

In this paper, we have carried out ab initio calculations on several basic clusters such as edge-sharing tetrahedral(ES), two edge-sharing tetrahedral(2ES), corner-sharing tetrahedral(CS), ethane-like structure and isolated S_nSe_{4-n} tetrahedron, which are calculated by Firefly(PC Gamess) software at the Hatree-Fork level with optimization based on HF/6-31G. Moreover, it is reported that the hydrogen atoms in the cluster are used as pseudoatoms to replace the chalcogenide glass by finite molecular model [13]. Due to the difference of large mass between H and the heavy atoms, it can prevent H-atom modes that do fall in this region are removed from the analysis of region for SiS₂ and SiSe₂.

3. Results

Table 1 shows the optimized geometries about bond distances and angles for isolated $S_nSe_{4,n}$ tetrahedral clusters in Si-S-Se glassy system. Figure 1 display the schematic representation of isolated S_nSe_{4-n} tetrahedral clusters. In addition, Table 2 demonstrates the Raman vibrational frequencies of isolated SiS_nSe_{4-n} (n=0, 1, 2, 3, 4) tetrahedron. Based on the point group theory and ab initio calculation, there are four basic vibrational modes in SiS_4 and $SiSe_4$ tetrahedron with T_d point group. Among them, V_1 type mode is called symmetry stretching vibration and V_3 type mode is named antisymmetric stretching vibration.

calculated at the HF/6-31G level					
Average	Bond dis	stance(Å)	Bond angle (degree)		
value	Si-S	Si-Se	S-Si-S	S-Si-Se	Se-Si-Se
SiS_4	2.223		114°		
SiS ₃ Se	2.227	2.361	113°	114 [°]	
SiS_2Se_2	2.230	2.363	112°	102°	114 ^o
SiSSe ₃	2.232	2.368		113°	114 [°]
$SiSe_4$		2.372			113°

Table 1.Optimized structural parameters (averaged values) of the SiS_nSe_{4-n} tetrahedron

tetranearon calculatea at HF/0-31G									
	$\nu_1(A_1)$	v_2	$_2(E)$		$v_3(F_2)$			$v_4(F_2)$	
T_d	ν_{s}	$\delta_d(Y)$	YXY)		$\nu_{\Box}\Box XY$	<i>(</i>)		$\delta_d (YXY)$)
	(XY)								
SiS_4	339	106		500		174			
SiSe ₄	194	:	80		395			107	
	$\nu_1(A_1)$	v	5(E)	$v_2(A_1$)	$v_4(E)$	$v_3(A)$	A ₁)	$v_6(E)$
C_{3v}	ν	$\delta_{s}(z)$	XY ₃)	v (XZ	.)	$v(XY_3)$	δ (Χ	Y ₃)	$\rho_r(XY_3)$
	(XY ₃)								
SiS ₃ Se	452	1	48	295		497	11	8	96
SiSSe ₃	227	1	20	482		400	88	3	75
	$\nu_1(A_1)$	$v_4(A_1)$	$v_5(A_2)$	$v_2(A_1)$	$v_6(B_1)$	v ₈ (B ₂)	$v_3(A_1)$	$v_7(B_1)$	$v_9(B_2)$
C_{2v}	v (XY)	δ	$\rho_r(XY_2)$	ν (XZ)	ν	ν (XZ)	δ	$\rho_m(XY_2)$	$\rho_r(XY_2)$
		(XZ_2)			(XY)		(XY ₂)		
SiS ₂ Se ₂	462	83	107	255	501	423	142	135	140

Table 2 The Raman vibrational frequencies of isolated SiS_nSe_{4-n} (n=0, 1, 2, 3, 4) tetrahedron calculated at HE/6 31G

Fig.1. Schematic representation of the SiS_nSe_{4-n} tetrahedron with different ratio of S/Se

Fig.2.Schematic illustration of four basic vibrationg modes in the isolated SiS₄ and SiSe₄ tetrahedron

The four basic vibrational modes in the isolated SiS_4 and $SiSe_4$ are shown in Figure 2. When one S(or Se) atom is replaced by Se(or S) atom, the basic vibration mode increase from four to six and the point group change from T_d to C_{3v} in SiS₃Se and SiSSe₃ tetrahedron. Moreover, two S (or Se) atoms are substituded by Se (or S) atoms. And the point group change from C_{3v} to C_{2v} the basic vibration mode increase from six to nine.

and $EIH-S_{12}S_6$ clusters calculated at the HF/6-31G level						
Average	Bond distance (Å) Bond angle (degree)					
value	Si-S	S-S	Si-Si	Si-S-Si	S-Si-S	
CS-Si ₂ S ₇	2.227	3.708	3.776	115°	112°	
ES-Si ₂ S ₆	2.247	3.693	3.077	86°	113°	
ETH-Si ₂ S ₆	2.229	3.691	2.386		112°	
2ES-Si ₃ S ₈	2.234			85°	114°,94°	

Table 3.Optimized structural parameters (averaged values) of CS-Si₂S₇, ES-Si₂S₆, 2ES-Si₃S₈ and ETH-Si₂S₆ clusters calculated at the HF/6-31G level

Table 4. Optimized structural parameters (averaged values) of CS-Si₂Se₇, ES-Si₂Se₆, 2ES-Si₃Se₈ and ETH-Si₂Se₆ clusters calculated at the HF/6-31G level

Average	В	Bond distance (Å)			Bond angle (degree)	
value	Si-Se	Se Se-Se		Si-Se-Si	Si Se-Si-Se	
CS-Si ₂ Se ₇	2.298	3.861	3.634	103°	114°	
ES-Si ₂ Se ₆	2.319	3.844	3.023	80°	112°	
ETH-Si ₂ Se ₆	2.297	3.807	2.327		110°	
2ES-Si ₃ Se ₈	2.317			$84^{\rm o}$	116°,96°	

Fig.3. Schematic representation of CS-, ES- and ETH-SiX₄ clusters(X=S or Se)

Table 3 and Table 4 show the optimized bond distances and bond angles of CS-Si₂S₇, ES-Si₂S₆, ETH-Si₂S₆, 2ES-Si₃S₈, CS-Si₂Se₇, ES-Si₂Se₆ and ETH-Si₂Se₆, 2ES-Si₃Se₈ clusters. Besides the single SiS₄ and SiSe₄ tetrahedron, the vibration modes of corner-sharing tetrahedral should be considered due to the effective coupling between neighbour tetrahedral. In terms of group theory analysis, there are twenty-one vibrational modes in the corner-sharing tetrahedron. Among them, three vibrational modes named "out of phase", "In-phase" and "cage motion" [14]. The schematic diagrams and calculated data of them are as follows:

Fig.4.Schematic illustration of coupled vibration modes in corner-sharing cluster

Cluster	"Out of phase"	"in-phase"	"Silicon cage motion"
Si ₂ S ₇	527	488	327
Si ₂ Se ₇	423	400	192

Table 5 Calculated data of main coupled mode related to "Si-O-Si" in Si_2O_7 cluster (cm⁻¹)

In addition, edge-sharing tetrahedral such as $\text{ES-Si}_2\text{S}_6$ and $\text{ES-Si}_2\text{Se}_6$ are also important basic clusters in SiS_2 and SiSe_2 glass system. According to point group analysis, there are 18 basic vibrational modes in $\text{ES-Si}_2\text{S}_6$ and $\text{ES-Si}_2\text{Se}_6$.and two vibrational modes of them are considered to the main vibrational modes. More details are as follows:

D_{2h}	$V_1(A_{1g})$	$V_2(A_{1g})$
X_2Y_6	V(XY)	V(XY)
Si_2S_6	377	563
Si ₂ Se ₆	212	470

Table 6 the main vibrational modes of ES-Si₂S₆ and ES-Si₂Se₆ calculated at HF/6-31G

Fig.5.Schematic illustration of the main vibrational modes of ES-Si₂S₆ and ES-Si₂Se₆

Apart from clusters above, the ethane-like structure also play an important role in SiS_2 and $SiSe_2$ glass system. Based on the point group, there are 12 basic vibrational modes in ETH-Si₂S₆ and ETH-Si₂Se₆. Two vibrational modes of them are considered to the main vibrational modes. More details are as follows:

Table 7 the main vibrational modes of ETH -Si ₂ S ₆ and ETH -Si ₂ Se ₆ calculated at HF /6-31G					
D_{2h}	$V_1(A_{1g})$	$V_2(A_{1g})$			
X_2Y_6	$V(XY_3)$	V(XX)			
Si_2S_6	387	530			
Si ₂ Se ₆	179	496			

Fig.6.Schematic illustration of the main vibrational modes of ES-Si₂S₆ and ES-Si₂Se₆

Besides the clusters above, the 2ES-Si $_3S_8$ and 2ES-Si $_3Se_8$ clusters are considered to be significant clusters in Si-S-Se glassy system.

Table 8 the main vibrational modes of $2ES$ - Si_3S_8 and $2ES$ - Si_3Se_8 calculated at HF/6-31G					
	Vs	V_{as}			
Si ₃ S ₈	421	557			
Si ₃ Se ₈	259	508			

Fig.7.Schematic illustration of the main vibrational modes of 2ES-Si₃S₈ and 2ES-Si₃Se₈

4. Discussion

Table 9 and Table 10 display the calculated Si-S and Si-Se symmetrical stretching vibrational modes in SiS_nSe_{4-n} tetrahedron, which indicate the similar variation of vibration mode frequencies with different number of symmetrical stretching bond. For example, there is one Si-S bond in the Si-S symmetrical stretching vibration mode of $SiSSe_3$ with frequency of $482cm^{-1}$. Then, there are two Si-S bonds in the Si-S symmetrical stretching vibration mode of SiS_2Se_2 , which frequency decrease from $482cm^{-1}$ to $462cm^{-1}$.when continuing to increase the number of Si-S bonds, the frequency drop continually until $339cm^{-1}$ with four Si-S bonds in the Si-S symmetrical stretching vibration mode of SiS_3 symmetrical stretching vibration mode of Si-S bonds in the Si-S bonds.

Table 9 The calculated Si-S symmetrical stretching vibrational modes in SiS_nSe_{4-n} tetrahedron

Туре	Si-S symmetrical s	tretching vibration	Calculated(cm ⁻¹)
SiSSe ₃	1(Si-S)	$v_2(A_1)$	482
SiS_2Se_2	2(Si-S)	$v_1(A_1)$	462
SiS ₃ Se	3(Si-S)	$v_1(A_1)$	452
SiS_4	4(Si-S)	$v_1(A_1)$	339

Table 10 The calculated Si-Se symmetrical stretching vibrational modes in SiS_nSe_{4-n} tetrahedron

Туре	Si-Se symmetrical s	Si-Se symmetrical stretching vibration		
SiS ₃ Se	1(Si-Se)	$v_2(A_1)$	295	
SiS_2Se_2	2(Si-Se)	$v_2(A_1)$	255	
SiSSe ₃	3(Si-Se)	$v_1(A_1)$	227	
SiSe ₄	4(Si-Se)	$v_1(A_1)$	194	

On the other hand, there is one Si-Se bond in the Si-Se symmetrical stretching vibration mode of SiS₃Se with frequency of 295cm^{-1} .With the increase of Si-Se bonds, the frequency decrease from 295cm^{-1} , 225cm^{-1} , 227cm^{-1} to 194cm^{-1} .Those similar variation can be explained by vibration coupling theory. For instance, when there is one Si-S bond, which induces the one type of Si-S stretching vibration (482cm⁻¹).

Then, when there are two Si-S bond, which induce two type of vibration modes called symmetry stretching vibration(462cm⁻¹), which is lower than one Si-S bond stretching vibration and antisymmetry stretching vibration(501cm⁻¹), which is higher than one Si-S bond stretching vibration. Continually, when there are three Si-S bonds, the Si-S symmetry stretching vibration drop gradually to 452cm⁻¹, which is lower than 462cm⁻¹ and the Si-S antisymmetry stretching vibration (497cm⁻¹), which is higher than 462cm⁻¹. Finally, when there are four Si-S bonds, the Si-S symmetry stretching vibration (339cm⁻¹) is lower than 452cm⁻¹. Meanwhile, the variation of Si-Se stretching vibration mode is the same.

On the other hand, Si-S-Se glassy system is similar to Ge-S-Se glassy system because of the similarity between Si and Ge atom. According to the central-force network model theory by Frank L.Galeener[15], the effective coupling between neighboring tetrahedral vibration modes of AX₂ glasses are related to the angle of A-X-A. In addition, the vibrational modes are determined more by the isolated AX₄ tetrahedra rather than by the A-X-A bonds, when the average A-X-A bond angle is smaller than the critical angle $\cos^{-1}(-2m/3M)$, where M is the mass of the A atom and m is that of the X atom. On the contrary, if the A-X-A angle is larger than the critical angle, the stretching modes of adjacent tetrahedra became strongly coupled. Based on the theory above, for the Ge-S-Se glassy system, the critical angle values of Ge-S-Ge and Ge-Se-Ge are 107.11° and 136.44°, respectively. In addition, the vibrational modes of basic clusters of isolated GeS_4 and GeSe₄ tetrahedron are corresponding to strongest peaks of Ge-S-Se Raman spectra [16]. However, according to the calculated data above, we found the dominant strong peaks at 427cm⁻¹ and 242cm⁻¹ in the Raman spectra of SiS₂ and SiSe₂ glassy system, respectively [17].which cannot be attributed to vibrational modes of SiS₄ and SiSe₄ clusters. That indicates the effective coupling of SiS_4 and $SiSe_4$ between neighboring tetrahedral is stronger than that of GeS_4 and GeSe₄ based on the central-force network model theory. The calculation data indicate that there are dominant strong peaks at 427cm⁻¹ and 242cm⁻¹, which should be attributed to the symmetrical stretching vibrational mode of 2ES-Si₃S₈ and 2ES-Si₃Se₈ clusters, respectively, which means the Vibrational properties of Si-S-Se system are more related to the intermediate range order, not short range order, compared to the Ge-S-Se system.

5. Conclusions

We have carried out ab initio calculations at the HF/6-31G level on the different basic clusters in Si-S-Se glassy systems such as edge-sharing tetrahedral(ES), two edge-sharing tetrahedral(2ES), corner-sharing tetrahedral(CS), ethane-like structure and isolated S_nSe_{4-n} tetrahedron (n=0,1,2,3,4) terminated by hydrogen atoms as pseudoatom. According to the point group theory, we found the vibrational modes of clusters increase with the decrease of point group symmetry. Furthermore, the Si-S and Si-Se symmetrical stretching vibration modes of

 S_nSe_{4-n} tetrahedron clusters are accordance with vibration coupling theory. Finally, the effective coupling of SiS₄ and SiSe₄ between neighboring tetrahedral is stronger than that of GeS₄ and GeSe₄.

References

- T.M. Monro, Y.D. West, D.W. Hewak, N. G. R. Broderick, D. J. Richardson, Electronics Letters, 36, 24 (2000).
- [2] J. Hu,V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit,K. Richardson,Optics Express, 15, 5 (2007).
- [3] S. Blaineau, P. Jund, Physical Review B, 70, 18 (2004).
- [4] A. Shavel, J. Arbiol, A. Cabot, Journal of the American Chemical Society, 132, 13 (2010).
- [5] C.J. Benmore, P.S. Salmon, Physical review letters, 73, 2 (1994).
- [6] R. Ahmad, M. Rochette, Optics letters, 37, 21, (2012).
- [7] C. Lin,Z. Li,L. Ying,Y. Xu,P. Zhang,S. Dai, The Journal of Physical Chemistry C, 116, 9 (2012).
- [8] A.H. Moharram, M.A. El-Oyoun, A.M. Abdel-Baset, Applied Physics A, 115, 3 (2014).
- [9] D.L. Sidebottom, T.D. Tran, S.E. Schnell, Journal of Non-Crystalline Solids, 402 (2014).
- [10] T. Yomei, U. Takashi, Y. Toshinobu, Journal of Non-Crystalline Solids 282 (2001).
- [11] J. Koblar, B. Arlin, G. Shau, Physical Review B 60, 22 (1999).
- [12] O. Kostadinova, A. Chrissanthopoulos, T. Petkova, P. Petkov, S.N. Yannopoulos, Journal of Solid State Chemistry, 184 (2011).
- [13] Z. Cernosek, E. Cernoskova, L. Benes, Journal of Molecular Structure 435, 2 (1997).
- [14] P. McMillan, Am Mineral, **69**, 622 (1984).
- [15] F.L. Galeener, Physical Review B, 19, 8 (1979).
- [16] H. Xuecai, S. Guangying, L. Yu, Y., Hongbo, L. Yonghua, Chalcogenide Lett, 9, 11 (2012).
- [17] M. Tenhover, M.A. Hazle, R.K. Grasselli, Physical review letters, 51, 5 (1983).