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Atoms may bind together into molecules, atomic clusters, solids; and, more slightly, they may 

form real gases and condense into liquids, both classical and quantal; matter aggregates over a large 
scale, from “soft” matter, like liquid crystals and polymers, up to the nuclear “starr” matter. In binding 
up the atoms into atomic, or molecular, aggregates the main principles of the atomic theory remain 
valid: in particular, the non-relativist approximation, the self-consistent (“mean”) field and the single-
particle states of the electrons, the quasi-classical description. In addition, the electrons motion is 
largely decoupled from the nuclei, or ions, motion, as a consequence of the great mass disproportion 
between these two entities; this is known as the adiabatic, or Born-Oppenheimer approximation [1]. 

The energies of the electron states, to which the Coulumb repulsion between the nuclei is 
added, are called molecular, or electron, terms, and they depend on the inter-nuclei separation; these 
terms may cross each other, for some shapes and sizes of the atomic aggregates, especially for a high 
symmetry, where the electrons states are degenerate; a strong coupling there exists in this case, 
however, between electrons and nuclei, and the aggregate changes, in general, its shape and size, such 
as to remove this degeneracy, and to reestablish the adiabatic behaviour; this is known as the Jahn-
Teller effect [2]. Another strong coupling  may also appear locally between electrons and ions, whose 
positions get polarized, by Coulumb forces, and distorted; the local ensemble of electron and its ions 
surrounding is called a polaron, [3] and it may have a mobility, slower or faster; otherwise, the 
adiabatic approximation holds. In classifying the electron terms the symmetries of the atomic 
aggregate are helpful, to a great extent, as, for instance, for the diatomic molecule, either homo- or 
heteronuclear [4].  

There are two main methods for computing the electron terms [5], and thereby the binding 
energy and the equilibrium, of an atomic aggregate; these methods are in fact intimately related, and 
their general principle is the linear superposition of atomic orbitals (LCAO), spin included, of a sui-
generis form; such a superposition is called a molecular orbital (MO). In the first treatment a set of 
atomic orbitals is assigned to each atom, usually with parameters which are determined variationally; 
these may be individual atomic orbitals, or linear combinations of them, in which case the orbitals, are 
said to be hybridized; then we have a number of electrons to distribute over these orbitals, form up the 
corresponding Slater determinants, and superpose them linearly; get the Schrodinger equation in the 
matriceal form between the determinants, and solve it for the spectrum of the electron single-particle 
states of the atomic aggregate; and finally, one may vary the solution with respect to the parameters; 
the method is fairly carried out through for the hydrogen molecule, and it  is known, basically, as the 
Heitler-London method [6]; obviously, it is the Hartree-Fock method for single-particle wavefunctions 
whose form is pre-determined to a certain extent; the ground-state of the hydrogen molecule is 
obtained as a singlet state, i.e. with antiparallel spins and a symmetric spatial orbital for the two 
electrons.  
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In the second treatment one starts with molecular orbitals [7], usually with variational 
parameters, properly antisymmetrized, and solve the corresponding Hartee or Hartree-Fock equations 
for them; for this reason, the method, which is usually called the molecular orbitals method, is also 
referred to as the self-consistent (“mean”) field  method; as a matter of fact, various approximations 
are made in applying this method, most of them related to the self-consistency, though usually 
touching less upon the quasi-classical description. Binding up the atomic aggregates shows that a 
rather small number of electron charges are involved in the process, and usually the high-energy 
electron states of the atomic constituents; thus, the valence concept in the chemical bond gets meaning 
[8]. Moreover, the spatial distribution of the binding electrons charge varies from the localization on 
some ions, through an almost equal sharing in-between, up to a more or less uniform distribution in 
space; the chemical bonds are thus conventionally described as ionic, covalent or, respectively, 
metallic; the superposition of wavefunctions between spatially distinct structures, which is sometimes 
called the resonance- (or resonating) – valence bond, is the underlying concept in all these 
developments; it originates in Heisenberg’s exchange integrals [9].  

Studies in atomic, or molecular, aggregates led naturally to the dissociation phenomenon too 
[10], as well as to the nature of the inter-atomic, or inter-molecular, potentials [11]. Basically, the 
atoms repel each other at short distances due to the Coulumb repulsion between their nuclei, and 
attract each other at longer distances by the  Coulumb attraction between electrons and nuclei; at very 
long distances they attract each other by van der Waals forces (~ -1/r6), as an average [12]; in between 
there exists a minimum value, or more, which are relevant for matter stability, in its various forms; 
slight inter-atomic forces act in real gases and liquids, while stronger interactions appear in clusters 
and solids. 

Semi-empirical inter-atomic, or inter-molecular, potentials are usually employed for the 
cohesion of matter, like for solids, for instance; solids may bind up weakly by van der Waals forces, 
like molecular solids; or stronger by ionic, or covalent bonds; and in a more particular manner as 
metals; indeed, in contrast with the ionic or covalent bonds which ar more directional, simple, alkali 
metals develop a more or less uniform distribution of electrons charge, as for a jellium model [13], 
while in more complex compounds, involving transition elements for instance, the  localized charges 
of the open atomic shells may come into play. For crystalline solids the molecular orbitals acquire a 
particular form, due to the translation symmetry, and they become “crystal” orbitals, or Bloch 
wavefunctions [14]; the crystal (quasi-) momentum labels them, while orthogonal quasi-atomic 
“crystal” orbital have also been devised [15]; in a “ crystal” orbital an atomic orbital is periodically 
superposed with the same orbital placed at all the other atomic positions in a crystal, and the 
interaction between neighbouring atoms (usually the nearest-neighbours) splits that atomic orbital into 
an energy band of dense electron levels, each for the two spin orientations of the electron (this is 
known as the “tight-binding approxiamtion”); such an energy band, thereore, accommodates up to 2 
electrons at most per unit cell in the crystal, according to the translation symmetry; each atomic orbital 
(or linear combination of atomic orbitals in the unit cell) generates such an energy band, and the bands 
are separated by energy gaps, reminiscent of the energy separation in the atomic states; usually, a few 
bands are constructed this way, corresponding to the “valence” states, including the lowest excited 
states, in the constituting atoms; the energy bands may intersect each other, such that the filling of the 
bands with electrons varies, it may be partial or total; the electrons in a filled band do not transport 
charge, while those in  an open band do; thus, some solids are insulators, while others conduct the 
electric current, and  there exists a great variety of crystalline solids classified as conductors, 
insulators, semiconductors, semimetals, etc.  

This is, basically, the theory of the energy bands in crystalline solids, and the determination of 
the energy bands, and the starting atomic orbitals, is a matter of approximation; for instance, especially 
for metals, the Schrodinger equation is solved in a “cell” assigned to each structural unit (and called 
the  Wigner-Seitz cell), and care is taken to satisfy the boundary conditions at the frontiers [16]. As 
metioned above, the electron energy structure of the complex compounds, involving transition 
elements, exhibits peculiarities in constructing the energy bands, due to the atomic orbitals of the open 
atomic shells; and a direct spatial picture of the electron states in the lattice may often be more 
convenient; such a picture is embodied, for instance, in the so-called Hubbard model, as well as in 
various other versions of this model [17]. Particularly interesting are such models with “localized” 
electrons for the magnetic properties of the solids, like ferromagnetism, or various other “electronic” 
transitions. Likewise, particularly interesting with respect to their crystalline and electronic structures 
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are the low-dimensional solids, like the layered structures and the quasi-one-dimensional materials; 
charge- and spin-density waves developed in these low-dimensional solids, associated with structural 
transitions and peculiar electron excitations [18]. The electron energy bands hold in crystalline solids, 
while in amorphous solids (which are not at equilibrium, in principle)  the electrons are localized, their 
energy levels are locally valid, and these levels may be quasi-statistical distributed; while the electrons 
may “hop” slowly from place to place [19]; solids, or various other atomic aggregates, with a broken 
translational symmetry, but with various other local symmetries, more or less extended, like quasi-
crystals, or fractals, have their own particularities as regarding the electronic structure. 

Apart from the ground-state, which implies the atomic and electronic structures, the great 
variety of phenomena in solids are associated with the great variety of excited states and elementary 
excitations, corresponding to various forms of motion of the various degrees of freedom [20]; first, for 
instance, there are the vibrations of the ions, called phonons, then the excitons, associated with 
electron-hole pairs across an energy gap, the electron quasi-particles and plasmons of the electron 
density oscillations, the magnouns of the magnetic momenta, etc.; such elementary excitations may 
transport charge, heat, energy or mass; and they interact with one another, according to their 
dynamics, leading to various other phenomena, like for instance, the superconductivity, as arising 
from electron-phonon coupling; or participate in various, structural, electronic, magnetic, etc., phase 
transitions; and they also respond to various external fields, like electric, magnetic, or electromagnetic 
fields; leading, for instance, to various electric, magnetic or optical properties, or to various 
phenomena of magnetic resonance, etc.; and solids may have defects, or imperfections, whose 
occurrence, dynamics and properties form a subject apart. 

Most of the basic concepts of solids were adapted for molecules, and atomic aggregates, 
especially those concerning the electron structure; an exception is perhaps the rational spectrum of 
excitations, which is specific to the molecules; however, the “crystal” electron orbital is often 
employed for molecules of high symmetry, like the benzene molecule, for instance [2]; energy bands 
are obtained this way (with due care for the resonating carbon-hydrogen double valence), often within 
a nearest-neighbours approximation, and electron “conducting” (ring, aromatic) or “insulating” (open 
chains, aliphatic) forms of such molecules are obtained; such an application of the molecular orbitals 
is often called Huckel’s method, or approximation; spin correlations may also be discussed in such a 
case, via Heisenberg’s exchange integrals, for instance. 

In general, a quasi-classical description is appropriate for large “pieces” of matter, like atomic, 
or molecular, aggregates, and even solids, made up of heavy atoms; both for their stability and  
equilibrium and for the lowest excited states of the electrons; for instance, the self-consistent field 
originating in every nuclei may be used fist to solve for the corresponding atomic orbitals in the quasi-
classical description (quasi-plane waves, actually), by using the Bohr- Sommerfeld quantization rules; 
their superposition for a molecular orbital may thereafter be emplyed in the tight-binding 
approximation for getting the corresponding electron energy band; for identical atoms this is a Huckel-
or Bloch-type computation in fact; fixing up the chemical potential by treating similarly the cation 
problem, also within the quasi-classical description, or by estimating the filling of the band through 
comparison with the quasi-classical approximation, may serve as a more accurate identification of the 
lowest energy electron states of the aggregate; as well as molecular orbitals may be devised within the 
quasi-classical description for a thorough electron motion over the whole metallic aggregate. 
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